[Arbres et dynamique des polynômes]
Dans ce travail, nous étudions des revêtements ramifiés d’arbres métriques simpliciaux
In this paper we study branched coverings of metrized, simplicial trees
@article{ASENS_2008_4_41_3_337_0, author = {DeMarco, Laura G. and McMullen, Curtis T.}, title = {Trees and the dynamics of polynomials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {337--383}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 41}, number = {3}, year = {2008}, doi = {10.24033/asens.2070}, mrnumber = {2482442}, zbl = {1202.37067}, language = {en}, url = {https://numdam.org/articles/10.24033/asens.2070/} }
TY - JOUR AU - DeMarco, Laura G. AU - McMullen, Curtis T. TI - Trees and the dynamics of polynomials JO - Annales scientifiques de l'École Normale Supérieure PY - 2008 SP - 337 EP - 383 VL - 41 IS - 3 PB - Société mathématique de France UR - https://numdam.org/articles/10.24033/asens.2070/ DO - 10.24033/asens.2070 LA - en ID - ASENS_2008_4_41_3_337_0 ER -
%0 Journal Article %A DeMarco, Laura G. %A McMullen, Curtis T. %T Trees and the dynamics of polynomials %J Annales scientifiques de l'École Normale Supérieure %D 2008 %P 337-383 %V 41 %N 3 %I Société mathématique de France %U https://numdam.org/articles/10.24033/asens.2070/ %R 10.24033/asens.2070 %G en %F ASENS_2008_4_41_3_337_0
DeMarco, Laura G.; McMullen, Curtis T. Trees and the dynamics of polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 3, pp. 337-383. doi : 10.24033/asens.2070. https://numdam.org/articles/10.24033/asens.2070/
[1] Potential theory on the Berkovich projective line, in preparation.
& ,[2] Reduction, dynamics, and Julia sets of rational functions, J. Number Theory 86 (2001), 175-195. | MR | Zbl
,[3] The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143-206. | Zbl
& ,[4] The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), 229-325. | Zbl
& ,[5] Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144 (1965). | MR | Zbl
,[6] Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), 773-790. | Zbl
, & ,[7] Dynamics of polynomials with disconnected Julia sets, Discrete Contin. Dyn. Syst. 9 (2003), 801-834. | MR | Zbl
,[8] Brownian motion, random walks on trees, and harmonic measure on polynomial Julia sets, preprint, 2006.
,[9] Théorie ergodique des fractions rationnelles sur un corps ultramétrique, preprint, 2007. | Zbl
& ,[10] An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. | Zbl
, & ,[11] Structures métriques pour les variétés riemanniennes, Textes Mathématiques 1, CEDIC, 1981. | MR | Zbl
,[12] On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217-235. | MR | Zbl
,[13] Turning curves for critically recurrent cubic polynomials, Nonlinearity 12 (1999), 411-418. | MR | Zbl
,[14] Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 467-511. | MR | Zbl
,[15] Puiseux series polynomial dynamics and iteration of complex cubic polynomials, Ann. Inst. Fourier (Grenoble) 56 (2006), 1337-1404. | Numdam | MR | Zbl
,[16] Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, preprint, 2006. | Zbl
& ,[17] Quasiconformal mappings in the plane, second éd., Springer, 1973. | Zbl
& ,[18] Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385. | MR | Zbl
,[19] Automorphisms of rational maps, in Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ. 10, Springer, 1988, 31-60. | MR | Zbl
,[20] The classification of conformal dynamical systems, in Current developments in mathematics, 1995 (Cambridge, MA), 323-360, Int. Press, Cambridge, MA, 1994. | MR | Zbl
,[21] Complex dynamics and renormalization, Annals of Mathematics Studies 135, Princeton University Press, 1994. | MR | Zbl
,
[22] Ribbon
[23] Local connectivity of Julia sets: expository lectures, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 67-116. | MR | Zbl
,[24] Trees and hyperbolic geometry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 590-597. | MR | Zbl
,[25] Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. 120 (1984), 401-476. | Zbl
& ,[26] An introduction to compactifying spaces of hyperbolic structures by actions on trees, in Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math. 1167, Springer, 1985, 228-240. | Zbl
& ,[27] Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). | Numdam | Zbl
,[28] Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. | MR | Zbl
,[29] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), 53-80. | MR | Zbl
,[30] Fixed points and circle maps, Acta Math. 179 (1997), 243-294. | MR | Zbl
,[31] Dessins d'enfants and Hubbard trees, Ann. Sci. École Norm. Sup. 33 (2000), 671-693. | MR | Zbl
,[32] Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), 425-440. | Zbl
& ,[33] Proof of the Branner-Hubbard conjecture on Cantor Julia sets, preprint, 2006. | Zbl
& ,[34] Dynamique des fonctions rationnelles sur des corps locaux, in Geometric methods in dynamics. II, Astérisque 287, 2003, 147-230. | Numdam | MR | Zbl
,
[35] Points périodiques des fonctions rationnelles dans l’espace hyperbolique
[36] Classification theory of Riemann surfaces, Die Grund. Math. Wiss., Band 164, Springer, 1970. | Zbl
& ,[37] Trees associated with the configuration of Herman rings, Ergodic Theory Dynam. Systems 9 (1989), 543-560. | MR | Zbl
,[38] Riemann surfaces, Chelsea Publishing Co., 1981.
,[39] Genus 0 and 1 Hurwitz numbers: recursions, formulas, and graph-theoretic interpretations, Trans. Amer. Math. Soc. 353 (2001), 4025-4038. | MR | Zbl
,Cité par Sources :