@article{AIHPC_2007__24_4_605_0, author = {D'Aprile, Teresa and Wei, Juncheng}, title = {Clustered solutions around harmonic centers to a coupled elliptic system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {605--628}, publisher = {Elsevier}, volume = {24}, number = {4}, year = {2007}, doi = {10.1016/j.anihpc.2006.04.003}, mrnumber = {2334995}, language = {en}, url = {https://numdam.org/articles/10.1016/j.anihpc.2006.04.003/} }
TY - JOUR AU - D'Aprile, Teresa AU - Wei, Juncheng TI - Clustered solutions around harmonic centers to a coupled elliptic system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 605 EP - 628 VL - 24 IS - 4 PB - Elsevier UR - https://numdam.org/articles/10.1016/j.anihpc.2006.04.003/ DO - 10.1016/j.anihpc.2006.04.003 LA - en ID - AIHPC_2007__24_4_605_0 ER -
%0 Journal Article %A D'Aprile, Teresa %A Wei, Juncheng %T Clustered solutions around harmonic centers to a coupled elliptic system %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 605-628 %V 24 %N 4 %I Elsevier %U https://numdam.org/articles/10.1016/j.anihpc.2006.04.003/ %R 10.1016/j.anihpc.2006.04.003 %G en %F AIHPC_2007__24_4_605_0
D'Aprile, Teresa; Wei, Juncheng. Clustered solutions around harmonic centers to a coupled elliptic system. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 4, pp. 605-628. doi : 10.1016/j.anihpc.2006.04.003. https://numdam.org/articles/10.1016/j.anihpc.2006.04.003/
[1] Semiclassical states of nonlinear Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997) 285-300. | MR | Zbl
, , ,[2] Multiplicity results for some nonlinear Schrödinger equations with potentials, Arch. Rational Mech. Anal. 159 (3) (2001) 253-271. | MR | Zbl
, , ,[3] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, I, Comm. Math. Phys. 235 (3) (2003) 427-466. | MR | Zbl
, , ,[4] Singularly perturbed elliptic equations with symmetry: existence of solutions concentrating on spheres, II, Indiana Univ. Math. J. 53 (2) (2004) 297-329. | MR | Zbl
, , ,
[5] Harmonic radius and concentration of energy, hyperbolic radius and Liouville’s equations,
[6] An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal. 11 (2) (1998) 283-293. | Zbl
, ,
[7] On the strict concavity of the harmonic radius in dimension
[8] The Gierer & Meinhardt system: the breaking of homopclinics and multi-bump ground states, Commun. Contemp. Math. 3 (3) (2001) 419-439. | MR | Zbl
, , ,
[9] Uniqueness of the ground state solution of
[10] Solitary waves for Maxwell-Schrödinger equations, Electronic J. Differential Equations 2004 (94) (2004) 1-31. | Zbl
, ,[11] A note on asymptotic uniqueness for some nonlinearities which change sign, Bull. Austral. Math. Soc. 61 (2000) 305-312. | MR | Zbl
,[12] On the profile of solutions with two sharp layers to a singularly perturbed semilinear Dirichlet problem, Proc. Roy. Soc. Edinburgh Sect. A 127 (4) (1997) 691-701. | MR | Zbl
, ,[13] Multipeak solutions for a singular perturbed Neumann problem, Pacific J. Math. 189 (2) (1999) 241-262. | MR | Zbl
, ,[14] Existence of solitary waves for the nonlinear Klein-Gordon Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A 134 (5) (2004) 893-906. | Zbl
, ,[15] On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal. 37 (1) (2005) 321-342. | Zbl
, ,[16] Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations 25 (1) (2006) 105-137.
, ,[17] Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial Differential Equations 4 (2) (1996) 121-137. | MR | Zbl
, ,[18] Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (2) (1998) 127-149. | Numdam | MR | Zbl
, ,[19] Semi-classical states for nonlinear Schrödinger equations, J. Funct. Anal. 149 (1) (1997) 245-265. | MR | Zbl
, ,[20] Semi-classical states of nonlinear Schrödinger equations: a variational reduction method, Math. Ann. 324 (1) (2002) 1-32. | MR | Zbl
, ,
[21] Multi-bump ground states for the Gierer-Meinhardt system in
[22] Partial Differential Equations, American Mathematical Society, Providence, RI, 1998. | MR | Zbl
,[23] Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential, J. Funct. Anal. 69 (3) (1986) 397-408. | MR | Zbl
, ,
[24] Symmetry of positive solutions of nonlinear elliptic equations in
[25] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, Heidelberg, 2001. | MR | Zbl
, ,[26] Some results on a class of nonlinear Schrödinger equations, Math. Z. 235 (4) (2000) 687-705. | MR | Zbl
,[27] Multipeak solutions for a semilinear Neumann problem, Duke Math. J. 84 (3) (1996) 739-769. | MR | Zbl
,[28] On multiple mixed interior and boundary peak solutions for some singularly perturbed Neumann problems, Canad. J. Math. 52 (3) (2000) 522-538. | MR | Zbl
, ,[29] Multiple boundary peak solutions for some singularly perturbed Neumann problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 17 (1) (2000) 47-82. | Numdam | MR | Zbl
, , ,[30] Discretizing manifolds via minimum energy points, Notices Amer. Math. Soc. 51 (10) (2004) 1186-1194. | MR | Zbl
, ,[31] Introduction to Potential Theory, John Wiley & Sons Inc., New York, 1969. | MR | Zbl
,[32] Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc. Var. Partial Differential Equations 21 (3) (2004) 287-318. | MR | Zbl
, ,[33] On interacting bumps of semiclassical states of nonlinear Schrödinger equations, Adv. Differential Equations 5 (7-9) (2000) 899-928.
, ,
[34] Uniqueness of positive solutions of
[35] On a singularly perturbed elliptic equation, Adv. Differential Equations 6 (2) (1997) 955-980. | MR | Zbl
,[36] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math. 44 (7) (1991) 819-851. | MR | Zbl
, ,
[37] Existence of semi-classical bound states of nonlinear Schrödinger equation with potential on the class
[38] Multi-peak solutions for a class of nonlinear Schrödinger equations, NoDEA Nonlinear Differential Equations Appl. 9 (1) (2002) 69-91. | MR | Zbl
,[39] On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (2) (1992) 270-291. | MR | Zbl
,[40] Semiclassical states for coupled Schrödinger-Maxwell equations: concentration around a sphere, Math. Models Methods Appl. Sci. 15 (1) (2005) 141-164. | Zbl
,[41] On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (2) (1993) 229-244. | MR | Zbl
,[42] On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem, J. Differential Equations 129 (2) (1996) 315-333. | MR | Zbl
,[43] J. Wei, M. Winter, Symmetric and asymmetric multiple clusters in a reaction-diffusion system, NoDEA Nonlinear Differential Equations Appl., in press. | MR
[44] Clustered spots in the FitzHugh-Nagumo system, J. Differential Equations 213 (1) (2005) 121-145.
, ,- Boundary layers to a singularly perturbed Klein–Gordon–Maxwell–Proca system on a compact Riemannian manifold with boundary, Advances in Nonlinear Analysis, Volume 8 (2019) no. 1, p. 559 | DOI:10.1515/anona-2017-0039
- Positive solutions for double singularly perturbed Schrödinger Maxwell systems, Nonlinear Analysis, Volume 174 (2018), p. 223 | DOI:10.1016/j.na.2018.05.002
- Semiclassical states for a static supercritical Klein–Gordon–Maxwell–Proca system on a closed Riemannian manifold, Communications in Contemporary Mathematics, Volume 18 (2016) no. 03, p. 1550039 | DOI:10.1142/s021919971550039x
- Klein-Gordon-Maxwell equations in high dimensions, Communications on Pure and Applied Analysis, Volume 14 (2015) no. 3, p. 1097 | DOI:10.3934/cpaa.2015.14.1097
- Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary, Contributions to Nonlinear Elliptic Equations and Systems, Volume 86 (2015), p. 299 | DOI:10.1007/978-3-319-19902-3_19
- Low energy solutions for singularly perturbed coupled nonlinear systems on a Riemannian manifold with boundary, Nonlinear Analysis: Theory, Methods Applications, Volume 119 (2015), p. 315 | DOI:10.1016/j.na.2014.10.024
- Low Energy Solutions for the Semiclassical Limit of Schrödinger–Maxwell Systems, Analysis and Topology in Nonlinear Differential Equations, Volume 85 (2014), p. 287 | DOI:10.1007/978-3-319-04214-5_17
- The role of the scalar curvature in some singularly perturbed coupled elliptic systems on Riemannian manifolds, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 6, p. 2535 | DOI:10.3934/dcds.2014.34.2535
- Number and profile of low energy solutions for singularly perturbed Klein–Gordon–Maxwell systems on a Riemannian manifold, Journal of Differential Equations, Volume 256 (2014) no. 7, p. 2502 | DOI:10.1016/j.jde.2014.01.012
- Static Klein–Gordon–Maxwell–Proca systems in 4-dimensional closed manifolds, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 667 | DOI:10.1515/crelle.2011.130
- EXISTENCE ANDA PRIORIBOUNDS FOR ELECTROSTATIC KLEIN–GORDON–MAXWELL SYSTEMS IN FULLY INHOMOGENEOUS SPACES, Communications in Contemporary Mathematics, Volume 12 (2010) no. 05, p. 831 | DOI:10.1142/s0219199710004007
Cité par 11 documents. Sources : Crossref