@article{AIHPC_2007__24_1_139_0, author = {Ortega, Jaime and Rosier, Lionel and Takahashi, Tak\'eo}, title = {On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {139--165}, publisher = {Elsevier}, volume = {24}, number = {1}, year = {2007}, doi = {10.1016/j.anihpc.2005.12.004}, mrnumber = {2286562}, language = {en}, url = {https://numdam.org/articles/10.1016/j.anihpc.2005.12.004/} }
TY - JOUR AU - Ortega, Jaime AU - Rosier, Lionel AU - Takahashi, Takéo TI - On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid JO - Annales de l'I.H.P. Analyse non linéaire PY - 2007 SP - 139 EP - 165 VL - 24 IS - 1 PB - Elsevier UR - https://numdam.org/articles/10.1016/j.anihpc.2005.12.004/ DO - 10.1016/j.anihpc.2005.12.004 LA - en ID - AIHPC_2007__24_1_139_0 ER -
%0 Journal Article %A Ortega, Jaime %A Rosier, Lionel %A Takahashi, Takéo %T On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid %J Annales de l'I.H.P. Analyse non linéaire %D 2007 %P 139-165 %V 24 %N 1 %I Elsevier %U https://numdam.org/articles/10.1016/j.anihpc.2005.12.004/ %R 10.1016/j.anihpc.2005.12.004 %G en %F AIHPC_2007__24_1_139_0
Ortega, Jaime; Rosier, Lionel; Takahashi, Takéo. On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid. Annales de l'I.H.P. Analyse non linéaire, Tome 24 (2007) no. 1, pp. 139-165. doi : 10.1016/j.anihpc.2005.12.004. https://numdam.org/articles/10.1016/j.anihpc.2005.12.004/
[1] Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: an approach in weighted Sobolev spaces, J. Math. Pures Appl. (9) 76 (1) (1997) 55-81. | MR | Zbl
, , ,[2] Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Comm. Partial Differential Equations 25 (5-6) (2000) 1019-1042. | Zbl
, , ,[3] On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9) 75 (2) (1996) 155-188. | MR | Zbl
,[4] On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain, SIAM J. Control Optim. 37 (6) (1999) 1874-1896, (electronic). | MR | Zbl
,[5] Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Rational Mech. Anal. 146 (1) (1999) 59-71. | MR | Zbl
, ,[6] On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Comm. Partial Differential Equations 25 (7-8) (2000) 1399-1413. | Zbl
, ,[7] On the motion of rigid bodies in a viscous fluid, Appl. Math. 47 (6) (2002) 463-484. | MR | Zbl
,[8] On the motion of rigid bodies in a viscous compressible fluid, Arch. Rational Mech. Anal. 167 (4) (2003) 281-308. | MR | Zbl
,[9] On the steady self-propelled motion of a body in a viscous incompressible fluid, Arch. Rational Mech. Anal. 148 (1) (1999) 53-88. | MR | Zbl
,[10] Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. | Zbl
, ,[11] G.P. Galdi, A.L. Silvestre, Strong solutions to the Navier-Stokes equations around a rotating obstacle, Arch. Rational Mech. Anal., July 2004, in press. | Zbl
[12] Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques, in: Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N.Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121-144. | Zbl
, ,[13] Introduction à la mécanique des milieux continus, Masson, Paris, 1980. | MR | Zbl
, ,[14] Exact boundary controllability of 3-D Euler equation, ESAIM Control Optim. Calc. Var. 5 (2000) 1-44, (electronic). | Numdam | MR | Zbl
,[15] Existence for an unsteady fluid-structure interaction problem, Math. Model. Numer. Anal. (M2AN) 34 (3) (2000) 609-636. | Numdam | Zbl
, ,[16] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech. 2 (3) (2000) 219-266. | MR | Zbl
, , ,[17] Ordinary Differential Equations, second ed., Birkhäuser, Boston, MA, 1982. | MR
,[18] An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Rational Mech. Anal. 150 (1999) 307-348. | Zbl
,[19] On a motion of a solid body in a viscous fluid. Two-dimensional case, Adv. Math. Sci. Appl. 9 (2) (1999) 633-648. | MR | Zbl
, ,[20] Zur Bewegung einer Kugel in einer zähen Flüssigkeit, Doc. Math. 5 (2000) 15-21, (electronic). | MR | Zbl
, ,[21] The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid, Dinamika Splošn. Sredy 255 (1974) 249-253, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami). | MR
,[22] On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal. 25 (1967) 188-200. | MR | Zbl
,[23] Exterior problem for the two-dimensional Euler equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1) (1983) 63-92. | MR | Zbl
,[24] Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Grundlehren Math. Wiss., Band 181, Springer-Verlag, New York, 1972, (Translated from the French by P. Kenneth). | MR | Zbl
, ,[25] Mathematical Topics in Fluid Mechanics. Vol. 1, Incompressible Models, Oxford Lecture Ser. Math. Appl., vol. 3, The Clarendon Press, Oxford University Press, New York, 1996, Oxford Sci. Publ. | MR | Zbl
,[26] Large time behavior for a simplified N-dimensional model of fluid-solid interaction, Comm. Partial Differential Equations 30 (1-3) (2005) 377-417. | Zbl
, ,[27] Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid, ESAIM: M2AN 39 (1) (2005) 79-108. | Numdam | MR | Zbl
, , ,[28] Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Rational Mech. Anal. 161 (2) (2002) 113-147. | MR | Zbl
, , ,[29] Chute libre d'un solide dans un fluide visqueux incompressible. Existence, Japan J. Appl. Math. 4 (1) (1987) 99-110. | MR | Zbl
,[30] On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech. 4 (4) (2002) 285-326. | MR | Zbl
,
[31] Compact sets in the space
[32] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser., vol. 43, Princeton University Press, Princeton, NJ, 1993, (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III). | MR | Zbl
,[33] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (12) (2003) 1499-1532. | Zbl
,[34] Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech. 6 (1) (2004) 53-77. | MR | Zbl
, ,[35] Problèmes mathématiques en plasticité, Gauthier-Villars, Montrouge, 1983. | MR | Zbl
,[36] Navier-Stokes Equations, Theory and Numerical Analysis, third ed., North-Holland Publishing Co., Amsterdam, 1984, (With an appendix by F. Thomasset). | Zbl
,[37] Large time behavior for a simplified 1D model of fluid-solid interaction, Comm. Partial Differential Equations 28 (9-10) (2003) 1705-1738. | Zbl
, ,- Measure-Valued Solutions and Weak–Strong Uniqueness for the Incompressible Inviscid Fluid–Rigid Body Interaction, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 3 | DOI:10.1007/s00021-021-00581-3
- On the motion of rigid bodies in a perfect fluid, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 4 | DOI:10.1007/s00030-021-00697-5
- External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid, Analysis PDE, Volume 13 (2020) no. 3, p. 651 | DOI:10.2140/apde.2020.13.651
- Existence of weak solutions for a Bingham fluid-rigid body system, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 36 (2019) no. 5, p. 1281 | DOI:10.1016/j.anihpc.2018.12.001
- Motion of a Particle Immersed in a Two Dimensional Incompressible Perfect Fluid and Point Vortex Dynamics, Particles in Flows (2017), p. 139 | DOI:10.1007/978-3-319-60282-0_3
- On the “viscous incompressible fluid + rigid body” system with Navier conditions, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 31 (2014) no. 1, p. 55 | DOI:10.1016/j.anihpc.2013.01.004
- Control of underwater vehicles in inviscid fluids, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, p. 662 | DOI:10.1051/cocv/2013079
- Dynamics of a small rigid body in a perfect incompressible fluid, Journées équations aux dérivées partielles (2014), p. 1 | DOI:10.5802/jedp.106
- Sur la dynamique de corps solides immergés dans un fluide incompressible, Séminaire Laurent Schwartz — EDP et applications (2014), p. 1 | DOI:10.5802/slsedp.39
- On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 3, p. 401 | DOI:10.1016/j.anihpc.2012.09.001
- Existence of Weak Solutions for a Two-dimensional Fluid-rigid Body System, Journal of Mathematical Fluid Mechanics, Volume 15 (2013) no. 3, p. 553 | DOI:10.1007/s00021-012-0127-9
- ON THE CONTROL OF THE MOTION OF A BOAT, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 04, p. 617 | DOI:10.1142/s0218202512500571
- A Kato Type Theorem for the Inviscid Limit of the Navier-Stokes Equations with a Moving Rigid Body, Communications in Mathematical Physics, Volume 316 (2012) no. 3, p. 783 | DOI:10.1007/s00220-012-1516-x
- Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid, Journal of Differential Equations, Volume 252 (2012) no. 7, p. 4259 | DOI:10.1016/j.jde.2011.12.011
- On a free piston problem for potential ideal fluid flow, Mathematical Methods in the Applied Sciences, Volume 35 (2012) no. 14, p. 1721 | DOI:10.1002/mma.2555
- On the Motion of a Rigid Body in a Two-Dimensional Irregular Ideal Flow, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 5, p. 3101 | DOI:10.1137/110839539
- Analyticity of the semigroup associated with the fluid–rigid body problem and local existence of strong solutions, Journal of Functional Analysis, Volume 261 (2011) no. 9, p. 2587 | DOI:10.1016/j.jfa.2011.07.001
- The movement of a solid in an incompressible perfect fluid as a geodesic flow, Proceedings of the American Mathematical Society, Volume 140 (2011) no. 6, p. 2155 | DOI:10.1090/s0002-9939-2011-11219-x
- Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid, Journal of Functional Analysis, Volume 259 (2010) no. 11, p. 2856 | DOI:10.1016/j.jfa.2010.07.006
- Smooth solutions for the motion of a ball in an incompressible perfect fluid, Journal of Functional Analysis, Volume 256 (2009) no. 5, p. 1618 | DOI:10.1016/j.jfa.2008.10.024
- Detecting a moving obstacle in an ideal fluid by a boundary measurement, Comptes Rendus. Mathématique, Volume 346 (2008) no. 15-16, p. 839 | DOI:10.1016/j.crma.2008.06.007
- On the detection of a moving obstacle in an ideal fluid by a boundary measurement, Inverse Problems, Volume 24 (2008) no. 4, p. 045001 | DOI:10.1088/0266-5611/24/4/045001
Cité par 22 documents. Sources : Crossref