@article{AIHPC_2003__20_4_625_0, author = {Hauray, M}, title = {On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {625--644}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2003}, doi = {10.1016/S0294-1449(02)00015-X}, zbl = {1028.35148}, language = {en}, url = {https://numdam.org/articles/10.1016/S0294-1449(02)00015-X/} }
TY - JOUR AU - Hauray, M TI - On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 625 EP - 644 VL - 20 IS - 4 PB - Elsevier UR - https://numdam.org/articles/10.1016/S0294-1449(02)00015-X/ DO - 10.1016/S0294-1449(02)00015-X LA - en ID - AIHPC_2003__20_4_625_0 ER -
%0 Journal Article %A Hauray, M %T On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 625-644 %V 20 %N 4 %I Elsevier %U https://numdam.org/articles/10.1016/S0294-1449(02)00015-X/ %R 10.1016/S0294-1449(02)00015-X %G en %F AIHPC_2003__20_4_625_0
Hauray, M. On two-dimensional hamiltonian transport equations with $\mathbb {L}_{loc}^p$ coefficients. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 625-644. doi : 10.1016/S0294-1449(02)00015-X. https://numdam.org/articles/10.1016/S0294-1449(02)00015-X/
[1] Sobolev Spaces, Academic Press, 1975, p. 54. | MR | Zbl
,[2] Renormalized solutions to the Vlassov equation with coefficients of bounded variation, Arch. Rat. Mech. Anal. 157 (2001) 75-90. | MR | Zbl
,[3] On two-dimensional hamiltonian transport equations with continuous coefficients, Differential Integral Equation 14 (8) (2001) 1015-1024. | MR | Zbl
, ,[4] Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547. | MR | Zbl
, ,[5] Sur les équations différentielles ordinaires et les équations de transport, C. R. Acad. Sci. Paris, Série I 326 (1998) 833-838. | MR | Zbl
,[6] Real Analysis, The MacMullan Company, 1963, Chapter 14. | MR | Zbl
,[7] Weakly Differentiable Functions, GTM, Springer-Verlag, 1989, p. 44. | MR | Zbl
,- Transport Equations and Flows with One-Sided Lipschitz Velocity Fields, Archive for Rational Mechanics and Analysis, Volume 248 (2024) no. 5 | DOI:10.1007/s00205-024-02029-0
- Well-posedness of the deterministic transport equation with singular velocity field perturbed along fractional Brownian paths, Journal of Differential Equations, Volume 362 (2023), p. 106 | DOI:10.1016/j.jde.2023.02.059
-
-Solutions of the transport equation by stochastic perturbation, Brazilian Journal of Probability and Statistics, Volume 34 (2020) no. 1 | DOI:10.1214/18-bjps408 - Regularization by Noise in One-Dimensional Continuity Equation, Potential Analysis, Volume 51 (2019) no. 1, p. 23 | DOI:10.1007/s11118-018-9700-z
- Global existence of weak solutions for compressible Navier–Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor, Annals of Mathematics, Volume 188 (2018) no. 2 | DOI:10.4007/annals.2018.188.2.4
- Nonlinear Quantitative Photoacoustic Tomography with Two-Photon Absorption, SIAM Journal on Applied Mathematics, Volume 78 (2018) no. 1, p. 479 | DOI:10.1137/16m1089228
- Stochastic continuity equation with nonsmooth velocity, Annali di Matematica Pura ed Applicata (1923 -), Volume 196 (2017) no. 5, p. 1669 | DOI:10.1007/s10231-017-0633-8
- Well posedness of ODE’s and continuity equations with nonsmooth vector fields, and applications, Revista Matemática Complutense, Volume 30 (2017) no. 3, p. 427 | DOI:10.1007/s13163-017-0244-3
- Frozen and almost frozen structures in the compressible rotating fluid, Bulletin of the Brazilian Mathematical Society, New Series, Volume 47 (2016) no. 2, p. 715 | DOI:10.1007/s00574-016-0180-8
- Critical non-Sobolev regularity for continuity equations with rough velocity fields, Journal of Differential Equations, Volume 260 (2016) no. 5, p. 4739 | DOI:10.1016/j.jde.2015.11.028
- Stability Issues in the Quasineutral Limit of the One-Dimensional Vlasov–Poisson Equation, Communications in Mathematical Physics, Volume 334 (2015) no. 2, p. 1101 | DOI:10.1007/s00220-014-2217-4
- Propagation of 1D Waves in Regular Discrete Heterogeneous Media: A Wigner Measure Approach, Foundations of Computational Mathematics, Volume 15 (2015) no. 6, p. 1571 | DOI:10.1007/s10208-014-9232-x
- Wellposedness for stochastic continuity equations with Ladyzhenskaya–Prodi–Serrin condition, Nonlinear Differential Equations and Applications NoDEA, Volume 22 (2015) no. 5, p. 1247 | DOI:10.1007/s00030-015-0321-6
- Multi-source quantitative photoacoustic tomography in a diffusive regime, Inverse Problems, Volume 27 (2011) no. 7, p. 075003 | DOI:10.1088/0266-5611/27/7/075003
- The Flow Associated to Weakly Differentiable Vector Fields: Recent Results and Open Problems, Nonlinear Conservation Laws and Applications, Volume 153 (2011), p. 181 | DOI:10.1007/978-1-4419-9554-4_7
- Well Posedness in any Dimension for Hamiltonian Flows with NonBVForce Terms, Communications in Partial Differential Equations, Volume 35 (2010) no. 5, p. 786 | DOI:10.1080/03605301003646705
- Differential equations with singular fields, Journal de Mathématiques Pures et Appliquées, Volume 94 (2010) no. 6, p. 597 | DOI:10.1016/j.matpur.2010.07.001
- Divergence-free vector fields in R2, Journal of Mathematical Sciences, Volume 170 (2010) no. 3, p. 283 | DOI:10.1007/s10958-010-0085-9
- Transport Equation and Cauchy Problem for Non-Smooth Vector Fields, Calculus of Variations and Nonlinear Partial Differential Equations, Volume 1927 (2008), p. 1 | DOI:10.1007/978-3-540-75914-0_1
- Transport equation and Cauchy problem forBVvector fields and applications, Journées équations aux dérivées partielles (2008), p. 1 | DOI:10.5802/jedp.1
- Existence, Uniqueness, Stability and Differentiability Properties of the Flow Associated to Weakly Differentiable Vector Fields, Transport Equations and Multi-D Hyperbolic Conservation Laws, Volume 5 (2008), p. 3 | DOI:10.1007/978-3-540-76781-7_1
- Solutions for Linear Conservation Laws with Velocity Fields in
, Archive for Rational Mechanics and Analysis, Volume 186 (2007) no. 1, p. 159 | DOI:10.1007/s00205-007-0058-4 - A Note on Two-Dimensional Transport with Bounded Divergence, Communications in Partial Differential Equations, Volume 31 (2006) no. 7, p. 1109 | DOI:10.1080/03605300500455933
- A Hamiltonian‐Preserving Scheme for the Liouville Equation of Geometrical Optics with Partial Transmissions and Reflections, SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 5, p. 1801 | DOI:10.1137/050631343
- Stability of flows associated to gradient vector fields and convergence of iterated transport maps, manuscripta mathematica, Volume 121 (2006) no. 1, p. 1 | DOI:10.1007/s00229-006-0003-0
- On Liouville Transport Equation with Force Field inBVloc, Communications in Partial Differential Equations, Volume 29 (2005) no. 1-2, p. 207 | DOI:10.1081/pde-120028850
- Transport equation and Cauchy problem for BV vector fields, Inventiones mathematicae, Volume 158 (2004) no. 2, p. 227 | DOI:10.1007/s00222-004-0367-2
Cité par 27 documents. Sources : Crossref