Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator
Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 5, pp. 443-457.
@article{AIHPC_1991__8_5_443_0,
     author = {Delano\"e, P.},
     title = {Classical solvability in dimension two of the second boundary-value problem associated with the {Monge-Amp\`ere} operator},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {443--457},
     publisher = {Gauthier-Villars},
     volume = {8},
     number = {5},
     year = {1991},
     doi = {10.1016/S0294-1449(16)30256-6},
     mrnumber = {1136351},
     zbl = {0778.35037},
     language = {en},
     url = {https://numdam.org/articles/10.1016/S0294-1449(16)30256-6/}
}
TY  - JOUR
AU  - Delanoë, P.
TI  - Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 1991
SP  - 443
EP  - 457
VL  - 8
IS  - 5
PB  - Gauthier-Villars
UR  - https://numdam.org/articles/10.1016/S0294-1449(16)30256-6/
DO  - 10.1016/S0294-1449(16)30256-6
LA  - en
ID  - AIHPC_1991__8_5_443_0
ER  - 
%0 Journal Article
%A Delanoë, P.
%T Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator
%J Annales de l'I.H.P. Analyse non linéaire
%D 1991
%P 443-457
%V 8
%N 5
%I Gauthier-Villars
%U https://numdam.org/articles/10.1016/S0294-1449(16)30256-6/
%R 10.1016/S0294-1449(16)30256-6
%G en
%F AIHPC_1991__8_5_443_0
Delanoë, P. Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator. Annales de l'I.H.P. Analyse non linéaire, Tome 8 (1991) no. 5, pp. 443-457. doi : 10.1016/S0294-1449(16)30256-6. https://numdam.org/articles/10.1016/S0294-1449(16)30256-6/

[1] A. Agmon, D. Douglis and L. Nirenberg, Estimates Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions, I. Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623-727; II, Ibid., Vol. 17, 1964, pp. 35- 92. | MR | Zbl

[2] T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité, J. Funct. Anal., Vol. 53, 1983, pp. 231-245.

[3] I. Bakel'Man, Generalized Solutions of Monge-Ampère Equations, Dokl. Akad. Nauk. S.S.S.R., Vol. 114:6, 1957, pp. 1143-1145 (in russian). | MR | Zbl

[4] L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet Problem for Nonlinear Second-Order Elliptic Equations I. Monge-Ampère equation, Comm. Pure Appl.Math., Vol. 37, 1984, pp. 369-402. | MR | Zbl

[5] B. Dacorogna and J. Moser, On a Partial Differential Equation Involving the Jacobian Determinant, Ann. Inst. Henri Poincaré Analyse non linéaire, Vol. 7:1, 1990, pp. 1-26. | Numdam | MR | Zbl

[6] P. Delanoë, Equations du type de Monge-Ampère sur les variétés Riemanniennes compactes II, J. Funct. Anal., Vol. 41, 1981, pp. 341-353. | MR | Zbl

[7] P. Delanoë, Equations de Monge-Ampère en dimension deux, C. R. Acad. Sci. Paris, 294, série I, 1982, pp. 693-696. | MR | Zbl

[8] P. Delanoë, Plongements radiaux Sn → Rn+1 à courbure de Gauss positive prescrite, Ann. Sci. Ec. Norm. Sup., Vol. 18, 1985, pp. 635-649. | Numdam | MR | Zbl

[9] P. Delanoë, Remarques sur les variétés localement Hessiennes, Osaka J. Math., Vol. 26, 1989, pp. 65-69. | MR | Zbl

[10] P. Delanoë, Viscosity Solutions of Eikonal and Lie Equations on Compact Manifolds, Ann. Global Anal. Geom., Vol. 7:2, 1989, pp. 79-83. | MR | Zbl

[11] E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differential-gleichungen zweiter Ordnung vom elliptischen Typus, Sitz. Ber. Preuß. Akad. Wissensch. Berlin, Math.-Phys. Kl, Vol. 19, 1927, pp. 147-152. | JFM

[12] E. Hopf, A Remark on Linear Elliptic Differential Equations of Second Order, Proc. Am. Math. Soc., Vol. 3, 1952, pp. 791-793. | MR | Zbl

[13] N.M. Ivotchkina, The a priori Estimate ∥u ∥2C(Ω) on Convex Solutions of the Dirichlet problem for the Monge-Ampère Equation, Zapisk. Nautchn. Semin. LOMI, Vol. 96, 1980, pp. 69-79. | Zbl

[14] L.Y. Liao and F. Schulz, Regularity of Solutions of Two-Dimensional Monge-Ampère Equations, Transact. Am. Math. Soc., Vol. 307:1, 1988, pp. 271-277. | MR | Zbl

[15] G.M. Lieberman and N.S. Trudinger, Nonlinear Oblique Boundary Value Problems for Nonlinear Elliptic Equations, Transact. Am. Math. Soc., 295:2, 1986, pp. 509-546. | MR | Zbl

[16] P.-L. Lions, N.S. Trudinger and J.I.E. Urbas, The Neumann problem for Equations of Monge-Ampère Type, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 539-563. | MR | Zbl

[17] L. Nirenberg, On Nonlinear Elliptic Partial Differential Equations and Hölder Continuity, Comm. Pure Appl. Math., Vol. 6, 1953, pp. 103-156. | MR | Zbl

[18] A.V. Pogorelov, Monge-Ampère Equations of Elliptic Type, Noordhoff Ltd, 1964. | MR | Zbl

[19] F. Schulz, Boundary Estimates for Solutions of Monge-Ampère Equations in the Plane, Ann. Sc. Norm. Sup. Pisa, Vol. 11:3, 1984, pp. 431-440. | Numdam | MR | Zbl

[20] K.-S. Tso, Personal Letters from the Chinese University of Hong-Kong sent on July 12, 1988 and on June 7, 1989.

[21] J.I.E. Urbas, The Oblique Derivative Problem for Equations of Monge-Ampère Type in Two Dimensions, Preprint, Courant Institute and CMA at Canberra, 1987. | MR | Zbl

  • Chen, Shibing; Liu, Jiakun; Wang, Xu‐Jia C2,αC2,α regularity of free boundaries in optimal transportation, Communications on Pure and Applied Mathematics, Volume 77 (2024) no. 1, p. 731 | DOI:10.1002/cpa.22151
  • Brendle, Simon; Léger, Flavien; McCann, Robert J.; Rankin, Cale A geometric approach to apriori estimates for optimal transport maps, Journal für die reine und angewandte Mathematik (Crelles Journal) (2024) | DOI:10.1515/crelle-2024-0071
  • Wang, Chong; Huang, Rongli; Bao, Jiguang On the second boundary value problem for a class of fully nonlinear flow III, Journal of Evolution Equations, Volume 24 (2024) no. 3 | DOI:10.1007/s00028-024-00983-6
  • Jiang, Qinfeng; Wei, Changhua; Xing, Tiantian The Global Classical Solution and Asymptotic Behavior of the Cauchy Problem for Hyperbolic Monge-Ampère Equation, Results in Mathematics, Volume 79 (2024) no. 1 | DOI:10.1007/s00025-023-02028-9
  • Shibing, Chen; Jiakun, Liu Optimal transport problems with the quadratic cost function, SCIENTIA SINICA Mathematica (2024) | DOI:10.1360/ssm-2023-0248
  • Chen, Shibing; Liu, Jiakun; Wang, Xu-Jia Regularity of optimal mapping between hypercubes, Advanced Nonlinear Studies, Volume 23 (2023) no. 1 | DOI:10.1515/ans-2023-0087
  • Wang, Chong; Huang, Rongli; Bao, Jiguang On the second boundary value problem for Lagrangian mean curvature equation, Calculus of Variations and Partial Differential Equations, Volume 62 (2023) no. 3 | DOI:10.1007/s00526-022-02412-3
  • Jhaveri, Yash; Savin, Ovidiu On the Regularity of Optimal Transports Between Degenerate Densities, Archive for Rational Mechanics and Analysis, Volume 245 (2022) no. 2, p. 819 | DOI:10.1007/s00205-022-01796-y
  • Khan, Gabriel; Zhang, Jun When optimal transport meets information geometry, Information Geometry, Volume 5 (2022) no. 1, p. 47 | DOI:10.1007/s41884-022-00066-w
  • Huang, Rongli; Li, Sitong On the second boundary value problem for special Lagrangian curvature potential equation, Mathematische Zeitschrift, Volume 302 (2022) no. 1, p. 391 | DOI:10.1007/s00209-022-03060-1
  • Miura, Tatsuya; Otto, Felix Sharp boundary ε-regularity of optimal transport maps, Advances in Mathematics, Volume 381 (2021), p. 107603 | DOI:10.1016/j.aim.2021.107603
  • Khan, Gabriel; Zhang, Jun Recent Developments on the MTW Tensor, Geometric Science of Information, Volume 12829 (2021), p. 515 | DOI:10.1007/978-3-030-80209-7_56
  • McCann, Robert J.; Pass, Brendan Optimal Transportation Between Unequal Dimensions, Archive for Rational Mechanics and Analysis, Volume 238 (2020) no. 3, p. 1475 | DOI:10.1007/s00205-020-01569-5
  • Savin, Ovidiu; Yu, Hui Regularity of optimal transport between planar convex domains, Duke Mathematical Journal, Volume 169 (2020) no. 7 | DOI:10.1215/00127094-2019-0068
  • Andriyanova, Elina On the Dirichlet problem for degenerate Monge–Ampère type equations, Calculus of Variations and Partial Differential Equations, Volume 58 (2019) no. 5 | DOI:10.1007/s00526-019-1619-8
  • Huang, Rongli; Ye, Yunhua On the Second Boundary Value Problem for a Class of Fully Nonlinear Flows I, International Mathematics Research Notices, Volume 2019 (2019) no. 18, p. 5539 | DOI:10.1093/imrn/rnx278
  • Hamfeldt, Brittany Froese Convergence Framework for the Second Boundary Value Problem for the Monge–Ampère Equation, SIAM Journal on Numerical Analysis, Volume 57 (2019) no. 2, p. 945 | DOI:10.1137/18m1201913
  • Chen, Shibing; Liu, Jiakun; Wang, Xu-Jia Global regularity of optimal mappings in non-convex domains, Science China Mathematics, Volume 62 (2019) no. 11, p. 2057 | DOI:10.1007/s11425-018-9465-8
  • Chen, Juanjuan; Huang, Rongli; Ye, Yunhua On the second boundary value problem for a class of fully nonlinear flows II, Archiv der Mathematik, Volume 111 (2018) no. 4, p. 407 | DOI:10.1007/s00013-018-1197-6
  • Huang, Rongli; Ou, Qianzhong On the Second Boundary Value Problem for a Class of Fully Nonlinear Equations, The Journal of Geometric Analysis, Volume 27 (2017) no. 4, p. 2601 | DOI:10.1007/s12220-017-9774-7
  • Huang, Yong; Jiang, Feida; Liu, Jiakun BoundaryC2,αestimates for Monge–Ampère type equations, Advances in Mathematics, Volume 281 (2015), p. 706 | DOI:10.1016/j.aim.2014.12.043
  • Vétois, Jérôme Continuity and injectivity of optimal maps, Calculus of Variations and Partial Differential Equations, Volume 52 (2015) no. 3-4, p. 587 | DOI:10.1007/s00526-014-0725-x
  • Jiang, Feida; Trudinger, Neil S.; Yang, Xiao-Ping On the Dirichlet problem for Monge-Ampère type equations, Calculus of Variations and Partial Differential Equations, Volume 49 (2014) no. 3-4, p. 1223 | DOI:10.1007/s00526-013-0619-3
  • Du, Shi-Zhong; Li, Qi-Rui Positivity of Ma-Trudinger-Wang curvature on Riemannian surfaces, Calculus of Variations and Partial Differential Equations, Volume 51 (2014) no. 3-4, p. 495 | DOI:10.1007/s00526-013-0684-7
  • Kim, Young-Heon; Kitagawa, Jun On the Degeneracy of Optimal Transportation, Communications in Partial Differential Equations, Volume 39 (2014) no. 7, p. 1329 | DOI:10.1080/03605302.2014.892129
  • Benamou, Jean-David; Froese, Brittany D.; Oberman, Adam M. Numerical solution of the Optimal Transportation problem using the Monge–Ampère equation, Journal of Computational Physics, Volume 260 (2014), p. 107 | DOI:10.1016/j.jcp.2013.12.015
  • Basterrechea, S.; Dacorogna, B. Existence of Solutions for Jacobian and Hessian Equations Under Smallness Assumptions, Numerical Functional Analysis and Optimization, Volume 35 (2014) no. 7-9, p. 868 | DOI:10.1080/01630563.2014.895746
  • Figalli, Alessio; Kim, Young-Heon; McCann, Robert J. Hölder Continuity and Injectivity of Optimal Maps, Archive for Rational Mechanics and Analysis, Volume 209 (2013) no. 3, p. 747 | DOI:10.1007/s00205-013-0629-5
  • Trudinger, Neil S. A note on global regularity in optimal transportion, Bulletin of Mathematical Sciences, Volume 3 (2013) no. 3, p. 551 | DOI:10.1007/s13373-013-0046-y
  • Lieberman, Gary Oblique derivative problems for elliptic and parabolic equations, Communications on Pure Applied Analysis, Volume 12 (2013) no. 6, p. 2409 | DOI:10.3934/cpaa.2013.12.2409
  • Pass, Brendan Regularity properties of optimal transportation problems arising in hedonic pricing models, ESAIM: Control, Optimisation and Calculus of Variations, Volume 19 (2013) no. 3, p. 668 | DOI:10.1051/cocv/2012027
  • Kim, Young-Heon; Streets, Jeffrey; Warren, Micah Parabolic Optimal Transport Equations on Manifolds, International Mathematics Research Notices, Volume 2012 (2012) no. 19, p. 4325 | DOI:10.1093/imrn/rnr188
  • Zhou, Bin The First Boundary Value Problem for Abreu’s Equation, International Mathematics Research Notices, Volume 2012 (2012) no. 7, p. 1439 | DOI:10.1093/imrn/rnr076
  • Kim, Young-Heon; McCann, Robert J. Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular), Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2012 (2012) no. 664, p. 1 | DOI:10.1515/crelle.2011.105
  • Loeper, Grégoire Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna, Archive for Rational Mechanics and Analysis, Volume 199 (2011) no. 1, p. 269 | DOI:10.1007/s00205-010-0330-x
  • Ahmad, Najma; Kim, Hwa Kil; McCann, Robert J. Optimal transportation, topology and uniqueness, Bulletin of Mathematical Sciences, Volume 1 (2011) no. 1, p. 13 | DOI:10.1007/s13373-011-0002-7
  • LIU, JIAKUN REGULARITY OF MONGE–AMPÈRE EQUATIONS IN OPTIMAL TRANSPORTATION, Bulletin of the Australian Mathematical Society, Volume 83 (2011) no. 1, p. 173 | DOI:10.1017/s0004972710001930
  • Figalli, Alessio; Villani, Cédric Optimal Transport and Curvature, Nonlinear PDE’s and Applications, Volume 2028 (2011), p. 171 | DOI:10.1007/978-3-642-21861-3_4
  • McCann, R. J.; Sosio, M. Hölder Continuity for Optimal Multivalued Mappings, SIAM Journal on Mathematical Analysis, Volume 43 (2011) no. 4, p. 1855 | DOI:10.1137/100802670
  • Caffarelli, Luis; McCann, Robert Free boundaries in optimal transport and Monge-Ampère obstacle problems, Annals of Mathematics, Volume 171 (2010) no. 2, p. 673 | DOI:10.4007/annals.2010.171.673
  • Kim, Y.-H. Counterexamples to Continuity of Optimal Transport Maps on Positively Curved Riemannian Manifolds, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnn120
  • Loeper, Grégoire On the regularity of solutions of optimal transportation problems, Acta Mathematica, Volume 202 (2009) no. 2, p. 241 | DOI:10.1007/s11511-009-0037-8
  • Trudinger, Neil S.; Wang, Xu-Jia On Strict Convexity and Continuous Differentiability of Potential Functions in Optimal Transportation, Archive for Rational Mechanics and Analysis, Volume 192 (2009) no. 3, p. 403 | DOI:10.1007/s00205-008-0147-z
  • Liu, Jiakun Hölder regularity of optimal mappings in optimal transportation, Calculus of Variations and Partial Differential Equations, Volume 34 (2009) no. 4, p. 435 | DOI:10.1007/s00526-008-0190-5
  • Figalli, Alessio; Rifford, Ludovic Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2, Communications on Pure and Applied Mathematics, Volume 62 (2009) no. 12, p. 1670 | DOI:10.1002/cpa.20293
  • Delanoë, Ph. Erratum to: “Classical solvability in dimension two of the second boundary value problem associated with the Monge–Ampère operator” [Ann. Inst. H. Poincaré Analyse Non Linéaire 8 (5) (1991) 443–457], Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 24 (2007) no. 5, p. 849 | DOI:10.1016/j.anihpc.2007.03.001
  • Urbas, John A Remark on minimal Lagrangian diffeomorphisms and the Monge-Ampère equation, Bulletin of the Australian Mathematical Society, Volume 76 (2007) no. 2, p. 215 | DOI:10.1017/s0004972700039605
  • Delanoë, Philippe; Loeper, Grégoire Gradient estimates for potentials of invertible gradient–mappings on the sphere, Calculus of Variations and Partial Differential Equations, Volume 26 (2006) no. 3, p. 297 | DOI:10.1007/s00526-006-0006-4
  • Ma, Xi-Nan; Trudinger, Neil S.; Wang, Xu-Jia Regularity of Potential Functions of the Optimal Transportation Problem, Archive for Rational Mechanics and Analysis, Volume 177 (2005) no. 2, p. 151 | DOI:10.1007/s00205-005-0362-9
  • Loeper, G. On the regularity of the polar factorization for time dependent maps, Calculus of Variations and Partial Differential Equations, Volume 22 (2005) no. 3, p. 343 | DOI:10.1007/s00526-004-0280-y
  • Delanoë, Ph. Gradient rearrangement for diffeomorphisms of a compact manifold, Differential Geometry and its Applications, Volume 20 (2004) no. 2, p. 145 | DOI:10.1016/j.difgeo.2003.10.003
  • Oliker, Vladimir Mathematical Aspects of Design of Beam Shaping Surfaces in Geometrical Optics, Trends in Nonlinear Analysis (2003), p. 193 | DOI:10.1007/978-3-662-05281-5_4
  • Urbas, John THE SECOND BOUNDARY VALUE PROBLEM FOR A CLASS OF HESSIAN EQUATIONS, Communications in Partial Differential Equations, Volume 26 (2001) no. 5-6, p. 859 | DOI:10.1081/pde-100002381
  • Wolfson, Jon G. Minimal Lagrangian diffeomorphisms and the Monge-Ampère equation, Journal of Differential Geometry, Volume 46 (1997) no. 2 | DOI:10.4310/jdg/1214459935
  • Urbas, John Nonlinear oblique boundary value problems for Hessian equations in two dimensions, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 12 (1995) no. 5, p. 507 | DOI:10.1016/s0294-1449(16)30150-0

Cité par 55 documents. Sources : Crossref