Les promenades aléatoires en paysage aléatoire sont des processus définis par
Random walks in random scenery are processes defined by
Mots-clés : random walk in random scenery, local limit theorem, local time, stable process
@article{AIHPB_2013__49_2_506_0, author = {Castell, Fabienne and Guillotin-Plantard, Nadine and P\`ene, Fran\c{c}oise}, title = {Limit theorems for one and two-dimensional random walks in random scenery}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {506--528}, publisher = {Gauthier-Villars}, volume = {49}, number = {2}, year = {2013}, doi = {10.1214/11-AIHP466}, mrnumber = {3088379}, zbl = {1278.60046}, language = {en}, url = {https://numdam.org/articles/10.1214/11-AIHP466/} }
TY - JOUR AU - Castell, Fabienne AU - Guillotin-Plantard, Nadine AU - Pène, Françoise TI - Limit theorems for one and two-dimensional random walks in random scenery JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 506 EP - 528 VL - 49 IS - 2 PB - Gauthier-Villars UR - https://numdam.org/articles/10.1214/11-AIHP466/ DO - 10.1214/11-AIHP466 LA - en ID - AIHPB_2013__49_2_506_0 ER -
%0 Journal Article %A Castell, Fabienne %A Guillotin-Plantard, Nadine %A Pène, Françoise %T Limit theorems for one and two-dimensional random walks in random scenery %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 506-528 %V 49 %N 2 %I Gauthier-Villars %U https://numdam.org/articles/10.1214/11-AIHP466/ %R 10.1214/11-AIHP466 %G en %F AIHPB_2013__49_2_506_0
Castell, Fabienne; Guillotin-Plantard, Nadine; Pène, Françoise. Limit theorems for one and two-dimensional random walks in random scenery. Annales de l'I.H.P. Probabilités et statistiques, Tome 49 (2013) no. 2, pp. 506-528. doi : 10.1214/11-AIHP466. https://numdam.org/articles/10.1214/11-AIHP466/
[1] Scaling limit for trap models on
[2] Convergence of Probability Measures. Wiley Series in Probability and Mathematical Statistics. Wiley, New York, 1968. | MR | Zbl
.[3] A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989) 108-115. | MR | Zbl
.[4] A limit theorem for sums of independent random variables defined on a recurrent random walk. Dokl. Akad. Nauk SSSR 246 (1979) 786-787 (in Russian). | MR | Zbl
.[5] Limit theorems for sums of independent random variables defined on a transient random walk. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979) 17-29, 237, 244. | MR | Zbl
.[6] Probability. Addison-Wesley, Reading, 1968. | MR | Zbl
.[7] F. Castell, N. Guillotin-Plantard, F. Pène and Br. Schapira. A local limit theorem for random walks in random scenery and on randomly oriented lattices. Ann. Probab. 39 (2011) 2079-2118. | MR | Zbl
[8] Moments and distribution of the local time of a two-dimensional random walk. Stochastic Process. Appl. 117 (2007) 262-270. | MR | Zbl
.[9] Moderate and small deviations for the ranges of one-dimensional random walks. J. Theor. Probab. 19 (2006) 721-739. | MR | Zbl
.[10] An asymptotic variance of the self-intersections of random walks. Sib. Math. J. 52 (2011) 639-650. | MR | Zbl
and .[11] Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950 353-367. Univ. California Press, Berkeley, CA, 1950. | MR | Zbl
and .[12] An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, New York, 1971. | MR | Zbl
.
[13] On the dynamics of trap models in
[14] Limit Theorems for Markov Chains and Stochastic Properties of Dynamical Systems by Quasi-Compactness. Lecture Notes in Mathematics 1766. Springer, Berlin, 2001. | MR | Zbl
and .[15] A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979) 5-25. | MR | Zbl
and .[16] Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields. J. Statist. Phys. 69 (1992) 917-954. | MR | Zbl
.[17] The range of stable random walks. Ann. Probab. 19 (1991) 650-705. | MR | Zbl
and .[18] Convergence rates in the strong law for associated random variables. Probab. Math. Statist. 20 (2000) 203-214. | MR | Zbl
.[19] Convergence du processus de sommes partielles vers un processus de Lévy pour les suites associées. C. R. Acad. Sci. Paris 349 (2011) 89-91. | MR | Zbl
and .[20] Is transport in porous media always diffusive? A counterxample. Water Resources Res. 16 (1980) 901-917.
and .[21] Principles of Random Walks. Van Nostrand, Princeton, NJ, 1964. | MR | Zbl
.[22] Limit theorems for stochastic processes. Theory Probab. Appl. 1 (1956) 261-290. | Zbl
.[23] Stochastic Process Limits. Springer Series in Operations Research. Springer, New York, 2002. | MR | Zbl
.Cité par Sources :