Nous démontrons la finitude de l’ensemble des puissances pures impaires ayant quatre chiffres non nuls dans leur écriture binaire. La preuve de ce théorème amène naturellement à des énoncés plus généraux, mais, pour simplifier, nous avons préféré nous borner à ce résultat. Notre méthode combine plusieurs ingrédients : des résultats (dérivés du théorème du sous-espace) sur les valeurs entières de séries analytiques aux points
We prove that there are only finitely many odd perfect powers in
Keywords: Diophantine equations, diophantine approximations, perfect powers
Mot clés : équations diophantiennes, approximations diophantiennes
@article{AIF_2013__63_2_715_0, author = {Corvaja, Pietro and Zannier, Umberto}, title = {Finiteness of odd perfect powers with four nonzero binary digits}, journal = {Annales de l'Institut Fourier}, pages = {715--731}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {2}, year = {2013}, doi = {10.5802/aif.2774}, zbl = {1294.11117}, mrnumber = {3112846}, language = {en}, url = {https://numdam.org/articles/10.5802/aif.2774/} }
TY - JOUR AU - Corvaja, Pietro AU - Zannier, Umberto TI - Finiteness of odd perfect powers with four nonzero binary digits JO - Annales de l'Institut Fourier PY - 2013 SP - 715 EP - 731 VL - 63 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://numdam.org/articles/10.5802/aif.2774/ DO - 10.5802/aif.2774 LA - en ID - AIF_2013__63_2_715_0 ER -
%0 Journal Article %A Corvaja, Pietro %A Zannier, Umberto %T Finiteness of odd perfect powers with four nonzero binary digits %J Annales de l'Institut Fourier %D 2013 %P 715-731 %V 63 %N 2 %I Association des Annales de l’institut Fourier %U https://numdam.org/articles/10.5802/aif.2774/ %R 10.5802/aif.2774 %G en %F AIF_2013__63_2_715_0
Corvaja, Pietro; Zannier, Umberto. Finiteness of odd perfect powers with four nonzero binary digits. Annales de l'Institut Fourier, Tome 63 (2013) no. 2, pp. 715-731. doi : 10.5802/aif.2774. https://numdam.org/articles/10.5802/aif.2774/
[1] Perfect powers with few binary digits and related diophantine problems, Annali Scuola Normale Sup. Pisa, Volume XII, 4 (2013), pp. 14 | Numdam | MR | Zbl
[2] Heights in Diophantine geometry, New Mathematical Monographs, 4, Cambridge University Press, 2006 | MR | Zbl
[3] On the diophantine equation
[4]
[5] Higher transcendental functions, I, McGraw-Hill, 1953 | MR | Zbl
[6] A note on the diophantine equation
[7] Polynomials with special regard to reducibility, Encyclopedia of mathematics and its applications, Cambridge University Press, 2000 | MR | Zbl
[8] Linear Independence Measures for Logarithms of Algebraic Numbers, Diophantine approximation (Lecture Notes in Math.), Volume 1819, Springer, 2003, pp. 249-344 (Cetraro, 2000) | MR | Zbl
[9]
[10] Roth Theorem, Integral Points and certain ramified covers of
Cité par Sources :