Nous considérons les marches aléatoires en milieu aléatoire sur
We consider transient random walks in random environment on
Keywords: Random walks in random environment, stable laws, fluctuations theory for random walks, Beta distributions
Mot clés : marches aléatoires en milieu aléatoire, lois stables, théorie des fluctuations pour une marche aléatoire, lois Beta
@article{AIF_2009__59_6_2469_0, author = {Enriquez, Nathana\"el and Sabot, Christophe and Zindy, Olivier}, title = {Limit laws for transient random walks in random environment on $\mathbb{Z}$}, journal = {Annales de l'Institut Fourier}, pages = {2469--2508}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {6}, year = {2009}, doi = {10.5802/aif.2497}, zbl = {1200.60093}, mrnumber = {2640927}, language = {en}, url = {https://numdam.org/articles/10.5802/aif.2497/} }
TY - JOUR AU - Enriquez, Nathanaël AU - Sabot, Christophe AU - Zindy, Olivier TI - Limit laws for transient random walks in random environment on $\mathbb{Z}$ JO - Annales de l'Institut Fourier PY - 2009 SP - 2469 EP - 2508 VL - 59 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://numdam.org/articles/10.5802/aif.2497/ DO - 10.5802/aif.2497 LA - en ID - AIF_2009__59_6_2469_0 ER -
%0 Journal Article %A Enriquez, Nathanaël %A Sabot, Christophe %A Zindy, Olivier %T Limit laws for transient random walks in random environment on $\mathbb{Z}$ %J Annales de l'Institut Fourier %D 2009 %P 2469-2508 %V 59 %N 6 %I Association des Annales de l’institut Fourier %U https://numdam.org/articles/10.5802/aif.2497/ %R 10.5802/aif.2497 %G en %F AIF_2009__59_6_2469_0
Enriquez, Nathanaël; Sabot, Christophe; Zindy, Olivier. Limit laws for transient random walks in random environment on $\mathbb{Z}$. Annales de l'Institut Fourier, Tome 59 (2009) no. 6, pp. 2469-2508. doi : 10.5802/aif.2497. https://numdam.org/articles/10.5802/aif.2497/
[1] Asymptotic behaviour for random walks in random environments, J. Appl. Probab., Volume 36 (1999), pp. 334-349 | DOI | MR | Zbl
[2] Persistent random walks in stationary environment, J. Stat. Phys., Volume 94 (1999), pp. 469-494 | DOI | MR | Zbl
[3] Dynamics of trap models, Ecole d’Été de Physique des Houches, Session LXXXIII “Mathematical Statistical Physics” (Lecture Notes in Math.), Elsevier, 2006, pp. 331-394
[4] Explicit stationary distributions for compositions of random functions and products of random matrices, J. Theoret. Probab., Volume 4 (1991), pp. 3-36 | DOI | MR | Zbl
[5] Large deviations techniques and applications, Applications of Mathematics (New York), 38, Springer-Verlag, New York, 1998 | MR | Zbl
[6] A probabilistic representation of constants in Kesten’s renewal theorem, Probab. Theory Related Fields, Volume 144 (2009), pp. 581-613 | DOI | MR | Zbl
[7] An introduction to probability theory and its applications. Vol. II., Second edition, John Wiley & Sons Inc., New York, 1971 | MR | Zbl
[8] Implicit renewal theory and tails of solutions of random equations, Ann. Appl. Probab., Volume 1 (1991), pp. 126-166 | DOI | MR | Zbl
[9] Simple transient random walks in one-dimensional random environment: the central limit theorem, Probab. Theory Related Fields, Volume 139 (2007), pp. 41-64 | DOI | MR | Zbl
[10] Limit distributions for random walks in a random environment, Soviet Math. Dokl., Volume 28 (1986), pp. 18-22
[11] Rates of convergence of diffusions with drifted Brownian potentials, Trans. Amer. Math. Soc., Volume 351 (1999), pp. 3915-3934 | DOI | MR | Zbl
[12] Extreme values in the
[13] A diffusion process in a Brownian environment with drift, J. Math. Soc. Japan, Volume 49 (1997), pp. 189-211 | DOI | MR | Zbl
[14] Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248 | DOI | MR | Zbl
[15] The limit distribution of Sinai’s random walk in random environment, Physica A, Volume 138 (1986), pp. 299-309 | DOI | MR | Zbl
[16] A limit law for random walk in a random environment, Compositio Math., Volume 30 (1975), pp. 145-168 | Numdam | MR | Zbl
[17] Limit theorems for one-dimensional transient random walks in Markov environments, Ann. Inst. H. Poincaré Probab. Statist., Volume 40 (2004), pp. 635-659 | DOI | Numdam | MR | Zbl
[18] Quenched limits for transient, zero speed one-dimensional random walk in random environment, Ann. Probab., Volume 37 (2009), pp. 143-188 | DOI | MR
[19] Note on a stochastic recursion, State of the art in probability and statistics (Leiden, 1999) (IMS Lecture Notes Monogr. Ser., 36), Inst. Math. Statist., Beachwood, OH, 2001, pp. 547-554 | MR
[20] The limiting behavior of a one-dimensional random walk in a random medium, Th. Probab. Appl., Volume 27 (1982), pp. 256-268 | DOI | MR | Zbl
[21] Rates of convergence of a transient diffusion in a spectrally negative Lévy potential, Ann. Probab., Volume 36 (2008), pp. 279-318 | DOI | MR | Zbl
[22] Random walks in a random environment, Ann. Probab., Volume 3 (1975), pp. 1-31 | DOI | MR | Zbl
[23] Random walks in random environment, Lectures on probability theory and statistics (Lecture Notes in Math.), Volume 1837, Springer, Berlin, 2004, pp. 189-312 | MR | Zbl
Cité par Sources :