Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres
Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 47-75.

Soit X une variété analytique complexe lisse et DX un diviseur libre. Les connexions logarithmiques intégrables par rapport à D peuvent être étudiées comme des 𝒪X-modules localement libres munis d’une structure de module (à gauche) sur l’anneau 𝒟X(logD) des opérateurs différentiels logarithmiques . Dans cet article nous étudions deux résultats liés : la relation entre les duaux d’une connexion logarithmique intégrable sur les anneaux de base 𝒟X et 𝒟X(logD), et un critère différentiel pour le théorème de comparaison logarithmique. Nous généralisons aussi une formule d’Esnault-Viehweg pour le dual de Verdier d’un complexe de de Rham logarithmique dans le cas à croisements normaux.

Let X be a complex analytic manifold and DX a free divisor. Integrable logarithmic connections along D can be seen as locally free 𝒪X-modules endowed with a (left) module structure over the ring of logarithmic differential operators 𝒟X(logD). In this paper we study two related results: the relationship between the duals of any integrable logarithmic connection over the base rings 𝒟X and 𝒟X(logD), and a differential criterion for the logarithmic comparison theorem. We also generalize a formula of Esnault-Viehweg in the normal crossing case for the Verdier dual of a logarithmic de Rham complex.

DOI : 10.5802/aif.2089
Classification : 32C38, 14F40, 32S40, 32S20
Mot clés : D-modules, dualité de Verdier, comparaison méromorphe-logarithmique, perversité
Keywords: D-modules, Verdier duality, meromorphic-logarithmic comparison, perversity
Calderón Moreno, Francisco Javier 1 ; Narváez Macarro, Luis 

1 Universidad de Sevilla, Facultad de Matemáticas, Departamento de Álgebra, c/ Tarfia s/n, 41012 Sevilla (Espagne)
@article{AIF_2005__55_1_47_0,
     author = {Calder\'on Moreno, Francisco Javier and Narv\'aez Macarro, Luis},
     title = {Dualit\'e et comparaison pour les complexes de de {Rham} logarithmiques par rapport aux diviseurs libres},
     journal = {Annales de l'Institut Fourier},
     pages = {47--75},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {1},
     year = {2005},
     doi = {10.5802/aif.2089},
     mrnumber = {2141288},
     zbl = {1089.32003},
     language = {fr},
     url = {https://numdam.org/articles/10.5802/aif.2089/}
}
TY  - JOUR
AU  - Calderón Moreno, Francisco Javier
AU  - Narváez Macarro, Luis
TI  - Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 47
EP  - 75
VL  - 55
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://numdam.org/articles/10.5802/aif.2089/
DO  - 10.5802/aif.2089
LA  - fr
ID  - AIF_2005__55_1_47_0
ER  - 
%0 Journal Article
%A Calderón Moreno, Francisco Javier
%A Narváez Macarro, Luis
%T Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres
%J Annales de l'Institut Fourier
%D 2005
%P 47-75
%V 55
%N 1
%I Association des Annales de l’institut Fourier
%U https://numdam.org/articles/10.5802/aif.2089/
%R 10.5802/aif.2089
%G fr
%F AIF_2005__55_1_47_0
Calderón Moreno, Francisco Javier; Narváez Macarro, Luis. Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 47-75. doi : 10.5802/aif.2089. https://numdam.org/articles/10.5802/aif.2089/

[1] E. Backelin On the homological dimension of a Der-free hypersurface, Math. Scand. (1996), pp. 13-18 | MR | Zbl

[2] N. Bourbaki Éléments de mathématiques. Algèbre. Chapitre 10: Algèbre homologique, Masson, Paris, 1980 | MR | Zbl

[3] F. J. Calderón Moreno Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor, Ann. Sci. École Norm. Sup. 4e série, Volume 32 (1999) no. 5, pp. 701-714 | Numdam | MR | Zbl

[4] F. J. Calderón Moreno; D. Mond; L. Narváez Macarro; F. J. Castro Jiménez Logarithmic cohomology of the complement of a plane curve, Comment. Math. Helv. (2002), pp. 24-38 | MR | Zbl

[5] F. J. Calderón Moreno; L. Narváez Macarro Locally quasi-homogeneous free divisors are Koszul free, Proc. Steklov Inst. Math., Volume 238 (2002), pp. 72-77 | MR | Zbl

[6] F. J. Calderón Moreno; L. Narváez Macarro The module 𝒟fs for locally quasi-homogeneous free divisors, Compositio Math. (2002), pp. 59-74 | Zbl

[7] F. J. Castro Jiménez; D. Mond; L. Narváez Macarro Cohomology of the complement of a free divisor, Trans. A.M.S., Volume 348 (1996), pp. 3037-3049 | DOI | MR | Zbl

[8] F. J. Castro Jiménez; J. M. Ucha Enríquez Free divisors and duality for 𝒟-modules, Proc. Steklov Inst. Math., Volume 238 (2002), pp. 88-96 | MR | Zbl

[9] F. J. Castro Jiménez; J. M. Ucha Enríquez Logarithmic comparaison theorem and some Euler homogeneous free divisors (to appear in Proc. of the American Mathematical Society) | MR | Zbl

[10] S. Chemla A duality property for complex Lie algebroids, Math. Z. (1999), pp. 367-388 | MR | Zbl

[11] P. Deligne Equations Différentielles à Points Singuliers Réguliers, Lect. Notes in Math., 163, Springer-Verlag, Berlin-Heidelberg, 1970 | MR | Zbl

[12] H. Esnault; E. Viehweg Logarithmic De Rham complexes and vanishing theorems, Invent. Math., Volume 86 (1986), pp. 161-194 | DOI | MR | Zbl

[13] D. R. Grayson; M. E. Stillman Macaulay 2 (A software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaula)

[14] J. Huebschmann Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 2, pp. 425-440 | DOI | Numdam | MR | Zbl

[15] J. Huebschmann Duality for Lie-Rinehart algebras and the modular class, J. Reine Angew. Math., Volume 510 (1999), pp. 103-159 | MR | Zbl

[16] A. Leykin; H. Tsai D-modules for Macaulay 2 (Package included in [13])

[17] Ph. Maisonobe; L. Narváez Macarro (editors) Éléments de la théorie des systèmes différentiels géométriques, Cours du C.I.M.P.A., École d'été de Séville (1996) (Séminaire et Congrès), Volume 8 (2004)

[18] Z. Mebkhout Le théorème de positivité, le théorème de comparaison et le théorème d'existence de Riemann, Cours de C.I.M.P.A., Ecole d'été de Séville (Séminaires et Congrès), Volume 8 (1996), pp. 165-308 | Zbl

[19] Z. Mebkhout Le formalisme des six opérations de Grothendieck pour les 𝒟X-modules cohérents, ``Travaux en cours'', 35, Paris, 1989 | Zbl

[20] Z. Mebkhout; L. Narváez Macarro La théorie du polynôme de Bernstein-Sato pour les algèbres de Tate et de Dwork-Monsky-Washnitzer, Ann. Sci. E.N.S., Volume 24 (1991), pp. 227-256 | Numdam | MR | Zbl

[21] L. Narváez Macarro The Local Duality Theorem in 𝒟-module Theory, Cours du CIMPA, Ecole d'été de Séville (Séminaires et Congrès), Volume 8 (1996), pp. 59-88 | Zbl

[22] L. Narváez Macarro; A. Rojas León Continuous division of linear differential operators and faithful flatness of 𝒟X over 𝒟X, Cours du C.I.M.P.A., Ecole d'Eté de Séville (Séminaires et Congrès), Volume 8 (1996), pp. 129-148 | Zbl

[23] G. S. Rinehart Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 195-222 | DOI | MR | Zbl

[24] K. Saito Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo, Volume 27 (1980), pp. 265-291 | MR | Zbl

[25] M. Sato; T. Kawai; and M. Kashiwara Microfunctions and pseudo-differential equations, Lect. Notes in Math., Volume 287 (1973), pp. 265-529 | MR | Zbl

[26] T. Torrelli On meromorphic functions defined by a differential system of order, Bull. Soc. Math. France, Volume 132 (2004) no. 1, pp. 591-612 | Numdam | MR | Zbl

[27] J.M. Ucha Enriquez Métodos constructivos en álgebras de operadores diferenciales (1999) (Univ. Sevilla, Ph. D)

Cité par Sources :