Alcôves et p-rang des variétés abéliennes
Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1665-1680.

On étudie la relation entre le p-rang des variétés abéliennes en caractéristique p et la stratification de Kottwitz-Rapoport de la fibre spéciale en p de l’espace de module des variétés abéliennes principalement polarisées avec structure de niveau de type Iwahori en p. En particulier, on démontre la densité du lieu ordinaire dans cette fibre spéciale.

We study the relation between the p-rank of abelian varieties in characteristic p and the Kottwitz-Rapoport’s stratification of the special fiber modulo p of the moduli space of principally polarized abelian varieties with Iwahori type level structure on p. In particular, the density of the ordinary locus in that special fiber is proved.

DOI : 10.5802/aif.1930
Classification : 14K10, 20G05
Mot clés : variétés abéliennes, p-rang, modèles locaux, alcôves
Keywords: abelian varieties, p-rank, local models, alcoves
Ngô, Bao Chau 1 ; Genestier, Alain 2

1 Université Paris-Nord, Département de Mathématiques, avenue J.-B. Clément, 93430 Villetaneuse (France)
2 Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay Cedex (France)
@article{AIF_2002__52_6_1665_0,
     author = {Ng\^o, Bao Chau and Genestier, Alain},
     title = {Alc\^oves et $p$-rang des vari\'et\'es ab\'eliennes},
     journal = {Annales de l'Institut Fourier},
     pages = {1665--1680},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {52},
     number = {6},
     year = {2002},
     doi = {10.5802/aif.1930},
     mrnumber = {1952527},
     zbl = {1046.14023},
     language = {fr},
     url = {https://numdam.org/articles/10.5802/aif.1930/}
}
TY  - JOUR
AU  - Ngô, Bao Chau
AU  - Genestier, Alain
TI  - Alcôves et $p$-rang des variétés abéliennes
JO  - Annales de l'Institut Fourier
PY  - 2002
SP  - 1665
EP  - 1680
VL  - 52
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://numdam.org/articles/10.5802/aif.1930/
DO  - 10.5802/aif.1930
LA  - fr
ID  - AIF_2002__52_6_1665_0
ER  - 
%0 Journal Article
%A Ngô, Bao Chau
%A Genestier, Alain
%T Alcôves et $p$-rang des variétés abéliennes
%J Annales de l'Institut Fourier
%D 2002
%P 1665-1680
%V 52
%N 6
%I Association des Annales de l’institut Fourier
%U https://numdam.org/articles/10.5802/aif.1930/
%R 10.5802/aif.1930
%G fr
%F AIF_2002__52_6_1665_0
Ngô, Bao Chau; Genestier, Alain. Alcôves et $p$-rang des variétés abéliennes. Annales de l'Institut Fourier, Tome 52 (2002) no. 6, pp. 1665-1680. doi : 10.5802/aif.1930. https://numdam.org/articles/10.5802/aif.1930/

[1] A. Beauville; Y. Laszlo Un lemme de descente, C. R. Acad. Sci. Paris, Sér. I Math, Volume 320 (1995) no. 3, pp. 335-340 | MR | Zbl

[2] G. Faltings; C.-L. Chai Degeneration of abelian varieties, Erb. Math, Springer-Verlag, 1990 | MR | Zbl

[3] A. Genestier Un modèle semi-stable de la variété de Siegel de genre 3 avec structures de niveau de type Γ0(p), Compositio Math, Volume 123 (2000) no. 3, pp. 303-328 | DOI | MR | Zbl

[4] U. Goertz On the flatness of local models for the symplectic group (e-print, math.AG/0011202)

[5] T. Haines Test functions for Shimura varieties: The Drinfeld case, Duke Math. J (2001), pp. 19-40 | DOI | MR | Zbl

[6] T. Haines; B.C. Ngô Nearby cycles on local models of some Shimura varieties (E-print. À paraître dans Compo. Math., math.AG/0103047) | Zbl

[7] T. Haines; B.C. Ngô Alcoves associated to special fibers of local models, e-print. À paraître dans Amer. M. Journal, math.RT/0103048

[8] J. Humphreys Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, Volume 29 | MR | Zbl

[9] N. Iwahori; H. Matsumoto On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Inst. Hautes études Sci. Publ. Math, Volume 25 (1965), pp. 5-48 | DOI | Numdam | MR | Zbl

[10] A. de Jong The moduli spaces of principally polarized abelian varieties with Γ0(p)-level structure, J. Algebraic Geom, Volume 2 (1993) no. 4, pp. 667-688 | MR | Zbl

[11] R. Kottwitz; M. Rapoport Minuscule alcoves for GLn and GSp2n, Manuscripta Math, Volume 102 (2000) no. 4, pp. 403-428 | MR | Zbl

[12] P. Norman; F. Oort Moduli of abelian varieties, Ann. of Math (2), Volume 112 (1980), pp. 419-439 | MR | Zbl

[13] M. Rapoport Communication privée (mars 2001)

[14] M. Rapoport; T. Zink Period spaces for p-divisible groups, Annals of Mathematics Studies, 141, Princeton University Press, Princeton, NJ, 1996 | MR | Zbl

  • Wang, Haining Deligne–Lusztig varieties and basic EKOR strata, Canadian Mathematical Bulletin, Volume 64 (2021) no. 2, p. 349 | DOI:10.4153/s0008439520000491
  • Shen, Xu; Yu, Chia-Fu; Zhang, Chao EKOR strata for Shimura varieties with parahoric level structure, Duke Mathematical Journal, Volume 170 (2021) no. 14 | DOI:10.1215/00127094-2021-0047
  • Boxer, George; Calegari, Frank; Gee, Toby; Pilloni, Vincent Abelian surfaces over totally real fields are potentially modular, Publications mathématiques de l'IHÉS, Volume 134 (2021) no. 1, p. 153 | DOI:10.1007/s10240-021-00128-2
  • LAN, KAI-WEN; STROH, BENOÎT COMPACTIFICATIONS OF SUBSCHEMES OF INTEGRAL MODELS OF SHIMURA VARIETIES, Forum of Mathematics, Sigma, Volume 6 (2018) | DOI:10.1017/fms.2018.20
  • LAN, KAI-WEN COMPACTIFICATIONS OF PEL-TYPE SHIMURA VARIETIES IN RAMIFIED CHARACTERISTICS, Forum of Mathematics, Sigma, Volume 4 (2016) | DOI:10.1017/fms.2015.31
  • Hamacher, Paul The p-rank stratification on the Siegel moduli space with Iwahori level structure, Manuscripta Mathematica, Volume 143 (2014) no. 1-2, p. 51 | DOI:10.1007/s00229-013-0616-z
  • Görtz, Ulrich; Hoeve, Maarten Ekedahl–Oort strata and Kottwitz–Rapoport strata, Journal of Algebra, Volume 351 (2012) no. 1, p. 160 | DOI:10.1016/j.jalgebra.2011.10.039
  • Görtz, Ulrich; Yu, Chia-Fu The supersingular locus in Siegel modular varieties with Iwahori level structure, Mathematische Annalen, Volume 353 (2012) no. 2, p. 465 | DOI:10.1007/s00208-011-0689-5
  • Pilloni, Vincent Prolongement analytique sur les variétés de Siegel, Duke Mathematical Journal, Volume 157 (2011) no. 1 | DOI:10.1215/00127094-2011-004
  • Görtz, Ulrich; Yu, Chia-Fu Supersingular Kottwitz–Rapoport strata and Deligne–Lusztig varieties, Journal of the Institute of Mathematics of Jussieu, Volume 9 (2010) no. 2, p. 357 | DOI:10.1017/s1474748009000218
  • Yu, Chia-Fu Kottwitz-Rapoport Strata in the Siegel Moduli Spaces, Taiwanese Journal of Mathematics, Volume 14 (2010) no. 6 | DOI:10.11650/twjm/1500406079
  • Yu, Chia-Fu Irreducibility of the Hilbert-Blumenthal moduli spaces with parahoric level structure, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2009 (2009) no. 635 | DOI:10.1515/crelle.2009.079
  • Yu, Chia-Fu Irreducibility and p-adic monodromies on the Siegel moduli spaces, Advances in Mathematics, Volume 218 (2008) no. 4, p. 1253 | DOI:10.1016/j.aim.2008.03.008

Cité par 13 documents. Sources : Crossref