Nous montrons qu’une surface minimale complété, plongée dans
We show that a complete minimal surface embedded in
@article{AIF_1988__38_4_121_0, author = {Toubiana, Eric}, title = {Un th\'eor\`eme d'unicit\'e de l'h\'elico{\"\i}de}, journal = {Annales de l'Institut Fourier}, pages = {121--132}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {4}, year = {1988}, doi = {10.5802/aif.1151}, mrnumber = {90a:53015}, zbl = {0645.53032}, language = {fr}, url = {https://numdam.org/articles/10.5802/aif.1151/} }
Toubiana, Eric. Un théorème d'unicité de l'hélicoïde. Annales de l'Institut Fourier, Tome 38 (1988) no. 4, pp. 121-132. doi : 10.5802/aif.1151. https://numdam.org/articles/10.5802/aif.1151/
[1] The topology of complete minimal surfaces of finite total Gaussian curvature. Topology, Vol. 22, n° 2 (1983), 203-221. | MR | Zbl
, ,[2] Complete minimal surfaces with long lines boundary. A paraître dans Duke Mathematical Journal. | Zbl
, , ,[3] Lectures on minimal submanifolds, Vol. 1, Math-lecture Series 9, Publish or Perish. | Zbl
,[4] A survey of minimal surfaces. Van Nostrand Reinhold Math. Studies, 25, 1969. | MR | Zbl
,[5] Global properties of minimal surfaces in E3 and En, Annals of Math., Vol. 80 (1964), 340-364. | MR | Zbl
,[6] uvres complètes, tome XIII des mémoires de la société royale de Goettinguen (1987), p. 305.
,[7] Thèse de doctorat.
,- Nonproper Complete Minimal Surfaces Embedded in H2 x R, International Mathematics Research Notices (2014) | DOI:10.1093/imrn/rnu068
- A characterization of the catenoid and helicoid, International Journal of Mathematics, Volume 24 (2013) no. 6, p. 11 (Id/No 1350045) | DOI:10.1142/s0129167x13500456 | Zbl:1270.53006
- Singly-periodic improper affine spheres., Differential Geometry and its Applications, Volume 17 (2002) no. 1, pp. 83-110 | DOI:10.1016/s0926-2245(02)00100-6 | Zbl:1066.53023
- Stable periodic projective planes, Proceedings of the American Mathematical Society, Volume 124 (1996) no. 12, p. 3851 | DOI:10.1090/s0002-9939-96-03681-7
- The geometry of periodic minimal surfaces, Commentarii Mathematici Helvetici, Volume 68 (1993) no. 1, p. 538 | DOI:10.1007/bf02565835
- Some uniqueness and nonexistence theorems for embedded minimal surfaces, Mathematische Annalen, Volume 295 (1993) no. 3, pp. 513-525 | DOI:10.1007/bf01444900 | Zbl:0789.53004
Cité par 6 documents. Sources : Crossref, zbMATH