On montre que tout pseudogroupe d’isométries locales d’une variété riemannienne, qui est complet et fermé pour la topologie
We show that every pseudogroup of local isometries on a Riemannian manifold, which is complete and closed for the
@article{AIF_1988__38_2_185_0, author = {Salem, \'Eliane}, title = {Une g\'en\'eralisation du th\'eor\`eme de {Myers-Steenrod} aux pseudogroupes d'isom\'etries}, journal = {Annales de l'Institut Fourier}, pages = {185--200}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {2}, year = {1988}, doi = {10.5802/aif.1139}, mrnumber = {89i:58166}, zbl = {0613.58041}, language = {fr}, url = {https://numdam.org/articles/10.5802/aif.1139/} }
TY - JOUR AU - Salem, Éliane TI - Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries JO - Annales de l'Institut Fourier PY - 1988 SP - 185 EP - 200 VL - 38 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://numdam.org/articles/10.5802/aif.1139/ DO - 10.5802/aif.1139 LA - fr ID - AIF_1988__38_2_185_0 ER -
%0 Journal Article %A Salem, Éliane %T Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries %J Annales de l'Institut Fourier %D 1988 %P 185-200 %V 38 %N 2 %I Institut Fourier %C Grenoble %U https://numdam.org/articles/10.5802/aif.1139/ %R 10.5802/aif.1139 %G fr %F AIF_1988__38_2_185_0
Salem, Éliane. Une généralisation du théorème de Myers-Steenrod aux pseudogroupes d'isométries. Annales de l'Institut Fourier, Tome 38 (1988) no. 2, pp. 185-200. doi : 10.5802/aif.1139. https://numdam.org/articles/10.5802/aif.1139/
[Hae-1] Pseudogroups of local isometries, Colloque de Géométrie Différentielle de St-Jacques-de-Compostelle, Sept. 1984, Research Notes 131, Pitman (1985), 174-197. | MR | Zbl
,[Hae-2] Leaf closures in riemannian foliations (à paraître). | Zbl
,[Kob] Transformation groups in differential geometry, Ergebnisse der Mathematik 70, Springer (1972). | MR | Zbl
,[Mol] Géométrie globale des feuilletages riemanniens, Proc. Kon. Nederland Akad, Série A1, 85 (1982), 45-76. | MR | Zbl
,[Mye-Ste] The group of isometries of a riemannian manifold, Ann. of Math., 40 (1939), 400-416. | JFM | Zbl
et ,[Pon] Topological groups, 2nd edition, Gordon and Breach, Science Publishers NY. | Zbl
,[Rei] Foliated manifolds with bundle-like metrics, Ann. of Math., 69 (1959), 119-132. | MR | Zbl
,[Sal] Feuilletages riemanniens et pseudogroupes d'isométries dans Riemannian Foliations de P. Molino. Progress in Mathematics, Vol. 73, Birkhaüser, p. 265-296.
,[Yam] On an arcwise connected subgroup of a Lie group, Osaka Math. Journal, Vol. 2, n° 1 (1950), 13-14. | MR | Zbl
,Cité par Sources :