Analytic disks with boundaries in a maximal real submanifold of 𝐂2
Annales de l'Institut Fourier, Tome 37 (1987) no. 1, pp. 1-44.

Soit M une sous-variété totalement réelle de dimension 2 et classe C2 dans C2. Une application continue F:Δ¯C2 de disque-unité fermé Δ¯C dans C2, qui est holomorphe sur Δ et applique sa frontière bΔ dans M, est appelée un disque analytique avec frontière dans M. Etant donné un disque initial F0 avec frontière dans M, on détermine l’existence des disques près de F0 avec les frontières dans les petites perturbations de M à l’aide de la classe d’homologie de courbe F0(bΔ) dans M. On démontre aussi un théorème de régularité pour des familles des disques et on construit un tore totalement réel de dimension 3 dans C3 avec une étrange enveloppe convexe polynomiale.

Let M be a two dimensional totally real submanifold of class C2 in C2. A continuous map F:Δ¯C2 of the closed unit disk Δ¯C into C2 that is holomorphic on the open disk Δ and maps its boundary bΔ into M is called an analytic disk with boundary in M. Given an initial immersed analytic disk F0 with boundary in M, we describe the existence and behavior of analytic disks near F0 with boundaries in small perturbations of M in terms of the homology class of the closed curve F0(bΔ) in M. We also prove a regularity theorem for immersed families of analytic disks, consider several examples, and construct a totally real three torus in C3 with a bizzare polynomially convex hull.

@article{AIF_1987__37_1_1_0,
     author = {Forstneric, Franc},
     title = {Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$},
     journal = {Annales de l'Institut Fourier},
     pages = {1--44},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {37},
     number = {1},
     year = {1987},
     doi = {10.5802/aif.1076},
     mrnumber = {88j:32019},
     zbl = {0583.32038},
     language = {en},
     url = {https://numdam.org/articles/10.5802/aif.1076/}
}
TY  - JOUR
AU  - Forstneric, Franc
TI  - Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$
JO  - Annales de l'Institut Fourier
PY  - 1987
SP  - 1
EP  - 44
VL  - 37
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://numdam.org/articles/10.5802/aif.1076/
DO  - 10.5802/aif.1076
LA  - en
ID  - AIF_1987__37_1_1_0
ER  - 
%0 Journal Article
%A Forstneric, Franc
%T Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$
%J Annales de l'Institut Fourier
%D 1987
%P 1-44
%V 37
%N 1
%I Institut Fourier
%C Grenoble
%U https://numdam.org/articles/10.5802/aif.1076/
%R 10.5802/aif.1076
%G en
%F AIF_1987__37_1_1_0
Forstneric, Franc. Analytic disks with boundaries in a maximal real submanifold of ${\bf C}^2$. Annales de l'Institut Fourier, Tome 37 (1987) no. 1, pp. 1-44. doi : 10.5802/aif.1076. https://numdam.org/articles/10.5802/aif.1076/

[1] H. Alexander, Hulls of deformations in Cn, Trans. Amer. Math. Soc., 266 (1981), 243-257. | MR | Zbl

[2] H. Alexander, A note on polynomially convex hulls, Proc. Amer. Math. Soc., 33 (1972), 389-391. | MR | Zbl

[3] H. Alexander and J. Wermer, Polynomial hulls with convex fibers, Math. Ann., 271 (1985), 99-109. | MR | Zbl

[4] E. Bedford, Stability of the polynomial hull of T2, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 8 (1982), 311-315. | Numdam | Zbl

[5] E. Bedford, Levi flat hypersurfaces in C2 with prescribed boundary : Stability, Annali Scuola Norm. Sup. Pisa cl. Sci., 9 (1982), 529-570. | Numdam | MR | Zbl

[6] E. Bedford and B. Gaveau, Envelopes of holomorphy of certain two-spheres in C2, Amer. J. Math., 105 (1983), 975-1009. | MR | Zbl

[7] E. Bishop, Differentiable manifolds in complex Euclidean spaces, Duke Math. J., 32 (1965), 1-21. | MR | Zbl

[8] A. Bogges and J. Pitts, CR extensions near a point of higher type, Duke Math. J., 52 (1985), 67-102. | Zbl

[9] A. Browder, Cohomology of maximal ideal spaces, Bull Amer. Math. Soc., 67 (1961), 515-516. | MR | Zbl

[10] H. Cartan, Calcul Différentiel, Hermann, Paris 1967. | MR | Zbl

[11] S. Chern and E. Spanier, A theorem on orientable surfaces in four-dimensional space, Comm. Math. Helv., 25 (1951), 205-209, North Holland, Amsterdam 1975. | MR | Zbl

[12] E.M. Cirka, Regularity of boundaries of analytic sets, (Russian) Math. Sb (N.S.) 117 (159), (1982), 291-334. English translation in Math. USSR Sb., 45 (1983), 291-336. | MR | Zbl

[13] F. Docquier and H. Grauert, Levisches Problem und Rungescher Satz für Teilgebiete Steinscher Mannigfaltigkeiten, Math. Ann., 140 (1960), 94-123. | MR | Zbl

[14] T. Duchamp and E.L. Stout, Maximum modulus sets, Ann. Inst. Fourier, 31-3 (1981), 37-69. | Numdam | MR | Zbl

[15] P.L. Duren, The Theory of Hp spaces, Academic Press, New-York and London, 1970. | MR | Zbl

[16] M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Graduate Texts in Mathematics, 41, Springer-Verlag, New-York, Heidelberg, Berlin 1973. | MR | Zbl

[17] F.R. Harvey and R.O. Wells, Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., 197 (1972), 287-318. | MR | Zbl

[18] D. Hilbert, Grundzüge einer allgemeiner Theorie der linearen Integralgleichungen, Leipzig, 1912.

[19] D.C. Hill and G. Taiani, Families of analytic disks in Cn with boundaries in a prescribed CR manifold, Ann. Scuola Norm. Sup. Pisa, 5 (1978), 327-380. | Numdam | Zbl

[20] C.E. Kenig and S.M. Webster, The local hull of holomorphy of a surface in the space of two complex variables, Invent. Math., 67 (1982), 1-21. | MR | Zbl

[21] C.E. Kenig and S.M. Webster, On the hull of holomorphy of n-manifold in Cn, Annali Scuola Norm. Sup. Pisa sci., 11 (1984), 261-280. | Numdam | MR | Zbl

[22] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109 (1981), 427-474. | Numdam | MR | Zbl

[23] W. Pogorzelski, Integral Equations and their Applications, Pergamon Press, Oxford, 1966. | MR | Zbl

[24] W. Rudin, Totally real Klein bottles in C2, Proc. Amer. Math. Soc., 82 (1981), 653-654. | MR | Zbl

[25] N. Steenrod, The Topology of Fiber Bundles, Princeton University Press, Princeton, New Jersey, 1951. | Zbl

[26] G. Stolzenberg, A hull with no analytic structure, J. Math. Mech., 12 (1963), 103-112. | MR | Zbl

[27] S. Webster, Minimal surfaces in Kähler manifolds, Preprint. | Zbl

[28] S. Webster, The Euler and Pontrjagin numbers of an n-manifold in Cn, Preprint. | Zbl

[29] A. Weinstein, Lectures on Symplectic Manifolds, Regional Conference Series in Mathematics 29, Amer. Math. Soc., Providence, R.I., 1977. | MR | Zbl

[30] J. Wermer, Polynomially convex hulls and analyticity, J. Math. Mech., 20 (1982), 129-135. | MR | Zbl

[31] L.V. Wolfersdorf, A class of nonlinear Riemann-Hilbert problems for holomorphic functions, Math. Nachr., 116 (1984), 89-107. | MR | Zbl

[32] F. Forstneric, Polynomially convex hulls with piecewise smooth boundaries, Math. Ann., 276 (1986), 97-104. | MR | Zbl

[33] F. Forstneric, On the nonlinear Riemann - Hilbert problem. To appear.

Cité par Sources :