Soit
Let
@article{AIF_1979__29_1_81_0, author = {Dupain, Yves}, title = {Discr\'epance de la suite $(\lbrace n\alpha \rbrace ),\alpha =(1+\sqrt{5})/2$}, journal = {Annales de l'Institut Fourier}, pages = {81--106}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {1}, year = {1979}, doi = {10.5802/aif.728}, mrnumber = {80f:10061}, zbl = {0386.10021}, language = {fr}, url = {https://numdam.org/articles/10.5802/aif.728/} }
TY - JOUR AU - Dupain, Yves TI - Discrépance de la suite $(\lbrace n\alpha \rbrace ),\alpha =(1+\sqrt{5})/2$ JO - Annales de l'Institut Fourier PY - 1979 SP - 81 EP - 106 VL - 29 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://numdam.org/articles/10.5802/aif.728/ DO - 10.5802/aif.728 LA - fr ID - AIF_1979__29_1_81_0 ER -
%0 Journal Article %A Dupain, Yves %T Discrépance de la suite $(\lbrace n\alpha \rbrace ),\alpha =(1+\sqrt{5})/2$ %J Annales de l'Institut Fourier %D 1979 %P 81-106 %V 29 %N 1 %I Institut Fourier %C Grenoble %U https://numdam.org/articles/10.5802/aif.728/ %R 10.5802/aif.728 %G fr %F AIF_1979__29_1_81_0
Dupain, Yves. Discrépance de la suite $(\lbrace n\alpha \rbrace ),\alpha =(1+\sqrt{5})/2$. Annales de l'Institut Fourier, Tome 29 (1979) no. 1, pp. 81-106. doi : 10.5802/aif.728. https://numdam.org/articles/10.5802/aif.728/
[1] Discrépance de la suite de van der Corput, C.R. Acad. Sc., Paris, 285 (1977), 313-316. | MR | Zbl
et ,[2] Intervalles à restes majorés pour la suite {nα}, Acta. Math. Acad. Scient. Hung., t. 29 (3,4) (1977), 289-303. | MR | Zbl
,[3] Uniform distribution of sequences, Wiley Interscience, New York, (1974), 88-132. | MR | Zbl
and ,[4] Sur la répartition modulo 1 des suites {nα}, Acta Arith., 20 (1972), 345-352. | MR | Zbl
,[5] Sur la répartition modulo 1 des suites {nα}, Séminaire Delange-Pisot-Poitou, (1966-1967), fascicule 1, exposé n° 2. | Numdam | Zbl
,- Proving Randomness, Probabilistic Diophantine Approximation (2014), p. 207 | DOI:10.1007/978-3-319-10741-7_4
- Pell’s Equation, Superirregularity and Randomness, Probabilistic Diophantine Approximation (2014), p. 251 | DOI:10.1007/978-3-319-10741-7_5
- What Is “Probabilistic” Diophantine Approximation?, Probabilistic Diophantine Approximation (2014), p. 3 | DOI:10.1007/978-3-319-10741-7_1
- Randomness of the square root of 2 and the Giant Leap, Part 1, Periodica Mathematica Hungarica, Volume 60 (2010) no. 2, p. 137 | DOI:10.1007/s10998-010-2137-9
- Symbolic representation of piecewise linear functions on the unit interval and application to discrepancy, Theoretical Computer Science, Volume 123 (1994) no. 1, p. 61 | DOI:10.1016/0304-3975(94)90069-8
- Suites dont la discr�pance est comparable � un logarithme, Monatshefte f�r Mathematik, Volume 110 (1990) no. 3-4, p. 207 | DOI:10.1007/bf01301676
- Self-similar measures and sequences, Journal of Number Theory, Volume 31 (1989) no. 2, p. 208 | DOI:10.1016/0022-314x(89)90022-x
Cité par 7 documents. Sources : Crossref