Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles
Annales de l'Institut Fourier, Tome 26 (1976) no. 1, pp. 81-140.

Soit P un opérateur (pseudo)-différentiel analytique, et soit V sa variété caractéristique. On suppose que V est régulière involutive de codimension r1, et que le symbole principal de P s’annule exactement à un ordre donné sur V. Alors, si u est une solution de Pu=v, le support essentiel (analytic wave front) de u est, en dehors de celui de v, réunion de r-feuilles bicaractéristiques. De plus, l’équation Pu=v est microlocalement résoluble.

On se ramène par transformation canonique au cas d’un opérateur P(x,t,Dx,Dt) partiellement elliptique en x, et on montre alors que les microfonctions solutions de Pu=0 sont restrictions au réel de microfonctions u(z,t) partiellement holomorphes en z.

Let P be an analytic (pseudo)-differential operator, and V its characteristic manifold. Assume that V is regular involutive, of codimension r1, and that the principal symbol of P vanishes exactly at a given order on V. Then, if u is a solution of Pu=v, the essential support (analytic wave front) of u is, outside that of v, a union of bicharacteristic r-dimensional leaves. Moreover, the equation Pu=v is microlocally solvable.

Using a canonical transformation, it is possible to assume P of the type P(x,t,Dx,Dt), partially elliptic with respect to x. Then, the microfunction solutions of Pu=0 are restrictions to the real domain of microfunctions u(z,t) partially holomorphic in the z-variables.

@article{AIF_1976__26_1_81_0,
     author = {Bony, Jean-Michel and Schapira, Pierre},
     title = {Propagation des singularit\'es analytiques pour les solutions des \'equations aux d\'eriv\'ees partielles},
     journal = {Annales de l'Institut Fourier},
     pages = {81--140},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {26},
     number = {1},
     year = {1976},
     doi = {10.5802/aif.601},
     mrnumber = {54 #1314},
     zbl = {0312.35064},
     language = {fr},
     url = {https://numdam.org/articles/10.5802/aif.601/}
}
TY  - JOUR
AU  - Bony, Jean-Michel
AU  - Schapira, Pierre
TI  - Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles
JO  - Annales de l'Institut Fourier
PY  - 1976
SP  - 81
EP  - 140
VL  - 26
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://numdam.org/articles/10.5802/aif.601/
DO  - 10.5802/aif.601
LA  - fr
ID  - AIF_1976__26_1_81_0
ER  - 
%0 Journal Article
%A Bony, Jean-Michel
%A Schapira, Pierre
%T Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles
%J Annales de l'Institut Fourier
%D 1976
%P 81-140
%V 26
%N 1
%I Institut Fourier
%C Grenoble
%U https://numdam.org/articles/10.5802/aif.601/
%R 10.5802/aif.601
%G fr
%F AIF_1976__26_1_81_0
Bony, Jean-Michel; Schapira, Pierre. Propagation des singularités analytiques pour les solutions des équations aux dérivées partielles. Annales de l'Institut Fourier, Tome 26 (1976) no. 1, pp. 81-140. doi : 10.5802/aif.601. https://numdam.org/articles/10.5802/aif.601/

[1] K.G. Anderson, Analytic wave front sets for solution of linear partial differential equations of principal type, Trans. Amer. Mat. Soc., 176 (1973), 5-22. | Zbl

[2] J.M. Bony et P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Inventiones Math., 17 (1972), 95-105. | MR | Zbl

[3] J.M. Bony et P. Schapira, Solutions hyperfonctions du problème de Cauchy, Lecture-Notes in Math., Springer, 287, (1973), 82-98. | MR | Zbl

[4] J.M. Bony et P. Schapira, Propagation des singularités analytiques des solutions des équations aux dérivées partielles, C.R. Acad. Sc. Paris, série A, 279 (1974), 231-233. | MR | Zbl

[5] L. Boutet De Monvel et P. Kree, Pseudo-differential operators and Gevrey classes, Ann. Inst. Fourier, 17 (1967), 295-323. | Numdam | MR | Zbl

[6] J.J. Duistermaat et L. Hörmander, Fourier Integral Operators II, Acta Math., 128 (1972), 183-289. | MR | Zbl

[7] L. Hörmander, Linear partial differential operators, Springer. | Zbl

[8] L. Hörmander, Uniqueness theorem and wave front sets for solutions of linear differential operators equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 617-704. | Zbl

[9] M. Kashiwara, Communication personnelle, Nice, Juin 1973.

[10] M. Kashiwara et T. Kawaï, Microhyperbolic pseudo-differential operators I (à paraître).

[11] T. Kawaï, Construction of local elementary solutions for linear partial differential operators with real analytic coefficients I, Publ. R.I.M.S., Kyoto Univ., 7 (1971), 363-397. | MR | Zbl

[12] H. Komatsu, An introduction to the theory of hyperfunctions, Lecture-Notes in Math., Springer, 287 (1973), 3-40. | MR | Zbl

[13] A. Martineau, Le “edge of the wedge theorem” en théorie des hyperfonctions de Sato, Proc. Intern. Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press, (1969), 95-106. | MR | Zbl

[14] M. Sato, Theory of hyperfunctions II, J. Fac. Sci. Univ. Tokyo, (1960), 387-437. | MR | Zbl

[15] M. Sato, Regularity of hyperfunction solutions of partial differential equations, Proc. Nice, Congress 2, Gauthiers-Villars, (1970), 785-794. | MR | Zbl

[S.K.K.] M. Sato, T. Kawaï et M. Kashiwara, Hyperfunctions and pseudo-differential equations, Lecture-Notes in Math., Springer, (1973), 265-529. | MR | Zbl

  • Lundberg, Erik Laplacian growth, elliptic growth, and singularities of the Schwarz potential, Journal of Physics A: Mathematical and Theoretical, Volume 44 (2011) no. 13, p. 135202 | DOI:10.1088/1751-8113/44/13/135202
  • Zampieri, Giuseppe Selected lectures in Microlocal Analysis, Advances in Phase Space Analysis of Partial Differential Equations, Volume 78 (2009), p. 291 | DOI:10.1007/978-0-8176-4861-9_17
  • Sugiki, Yuichi; Takeuchi, Kiyoshi Notes on the Cauchy–Kowalevski Theorem for E-modules, Journal of Functional Analysis, Volume 181 (2001) no. 1, p. 1 | DOI:10.1006/jfan.2000.3707
  • Okada, Yasunori On distribution solutions of microdifferential equations with double involutive characteristics, Communications in Partial Differential Equations, Volume 24 (1999) no. 7-8, p. 1419 | DOI:10.1080/03605309908821470
  • Ishimura, R. The cauchy-kowalevski theorem for ε-modules, Journal de Mathématiques Pures et Appliquées, Volume 77 (1998) no. 7, p. 647 | DOI:10.1016/s0021-7824(98)80002-0
  • Liess, Otto; Okada, Yasunori; Tose, Nobuyuki A remark on 2-microhyperbolicity, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 74 (1998) no. 3 | DOI:10.3792/pjaa.74.39
  • Liess, O.; Rodino, L. Linear Partial Differential Equations with Multiple Involutive Characteristics, Microlocal Analysis and Spectral Theory (1997), p. 1 | DOI:10.1007/978-94-011-5626-4_1
  • Takeuchi, Kiyoshi On higher-codimensional boundary value problems, New Trends in Microlocal Analysis (1997), p. 225 | DOI:10.1007/978-4-431-68413-8_18
  • Koshimizu, Hiroshi; Takeuchi, Kiyoshi On the solvability of linear partial differential equations, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 72 (1996) no. 6 | DOI:10.3792/pjaa.72.121
  • Uchikoshi, Keisuke Microdifferential equations with non-involutory factors, Communications in Partial Differential Equations, Volume 18 (1993) no. 9-10, p. 1557 | DOI:10.1080/03605309308820986
  • Takeuchi, Kiyoshi On the second microlocalization along isotropic submanifolds, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 69 (1993) no. 5 | DOI:10.3792/pjaa.69.136
  • Komatsu, Hikosaburo Microlocal analysis in gevrey classes and in complex domains, Microlocal Analysis and Applications, Volume 1495 (1991), p. 161 | DOI:10.1007/bfb0085124
  • Uchikoshi, Keisuke Microdifferential equations with non-involutory characteristics, Communications in Partial Differential Equations, Volume 15 (1990) no. 1, p. 1 | DOI:10.1080/03605309908820676
  • D'ancona, P.; Tose, N.; Zampieri, G. Propagation Of Songularities Up To the Boundary Along Leaves, Communications in Partial Differential Equations, Volume 15 (1990) no. 4, p. 453 | DOI:10.1080/03605309908820693
  • IGARI, Katsuju The characteristic Cauchy problem at a point where the multiplicity varies, Japanese journal of mathematics. New series, Volume 16 (1990) no. 1, p. 119 | DOI:10.4099/math1924.16.119
  • Bolley, Pierre; Camus, Jacques; Metivier, Guy Théorème d'unicité pour des vecteurs analytiques, Journal of Differential Equations, Volume 86 (1990) no. 1, p. 59 | DOI:10.1016/0022-0396(90)90040-v
  • Kataoka, Kiyômi Some Applications of Microlocal Energy Methods to Analytic Hypoellipticity, Algebraic Analysis (1988), p. 287 | DOI:10.1016/b978-0-12-400465-8.50031-6
  • Liess, Otto Localization and propagation of analytic singularities for operators with constant coefficients, Communications in Partial Differential Equations, Volume 13 (1988) no. 6, p. 729 | DOI:10.1080/03605308808820558
  • Tose, Nobuyuki; Uchida, Moto-o On a class of partially hypoelliptic microdifferential equations, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 63 (1987) no. 9 | DOI:10.3792/pjaa.63.342
  • Aoki, Takashi; Kashiwara, Masaki; Kawai, Takahiro On a class of linear differential operators of infinite order with finite index, Advances in Mathematics, Volume 62 (1986) no. 2, p. 155 | DOI:10.1016/0001-8708(86)90098-8
  • Cattabriga, L.; Zanghirati, L. Fourier Integral Operators of Infinite Order on Gevrey Spaces. Applications to the Cauchy Problem for Hyperbolic Operators, Advances in Microlocal Analysis (1986), p. 41 | DOI:10.1007/978-94-009-4606-4_3
  • Duff, G. F. D. Singularities, Supports and Lacunas, Advances in Microlocal Analysis (1986), p. 73 | DOI:10.1007/978-94-009-4606-4_4
  • Rodino, Luigi; Zanghirati, Luisa Pseudo differential operators with multiple characteristics and gevrey singularities, Communications in Partial Differential Equations, Volume 11 (1986) no. 7, p. 673 | DOI:10.1080/03605308608820441
  • KAWAI, Takahiro Systems of Microdifferential Equations of Infinite Order, Hyperbolic Equations and Related Topics (1986), p. 143 | DOI:10.1016/b978-0-12-501658-2.50013-0
  • Kataoka, Kiy�mi Microlocal energy methods and pseudo-differential operators, Inventiones Mathematicae, Volume 81 (1985) no. 2, p. 305 | DOI:10.1007/bf01389055
  • WAKABAYASHI, Seiiehiro Singularities of solutions of the Cauchy problem for hyperbolic systems in Gevrey classes, Japanese journal of mathematics. New series, Volume 11 (1985) no. 1, p. 157 | DOI:10.4099/math1924.11.157
  • Liess, O. Necessary and sufficient conditions for propagation of singularities for systems of linear partial differential operators with constant coefficients, Communications in Partial Differential Equations, Volume 8 (1983) no. 2, p. 89 | DOI:10.1080/03605308308820265
  • Wakabayashi, Seiichiro Analytic singularities of solutions of the hyperbolic Cauchy problem, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 59 (1983) no. 10 | DOI:10.3792/pjaa.59.449
  • Weak solutions of the massless field equations, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Volume 384 (1982) no. 1787, p. 403 | DOI:10.1098/rspa.1982.0165
  • Wells, R. O. Hyperfunction solutions of the zero-rest-mass field equations, Communications in Mathematical Physics, Volume 78 (1981) no. 4, p. 567 | DOI:10.1007/bf02046765
  • Kataoka, Kiyoomi Microlocal Analysis of Boundary Value Problems with Applications to Diffraction, Singularities in Boundary Value Problems (1981), p. 121 | DOI:10.1007/978-94-009-8434-9_6
  • Schapira, Pierre Propagation at the Boundary of Analytic Singularities, Singularities in Boundary Value Problems (1981), p. 185 | DOI:10.1007/978-94-009-8434-9_9
  • Sjöstrand, Johannes Analytic Singularities of Solutions of Boundary Value Problems, Singularities in Boundary Value Problems (1981), p. 235 | DOI:10.1007/978-94-009-8434-9_11
  • Helffer, B.; Mattera, CI. Analyticite et iteres reduits d'un systeme de champs de vecteurs, Communications in Partial Differential Equations, Volume 5 (1980) no. 10, p. 1065 | DOI:10.1080/03605308008820164
  • Kashiwara, Masaki; Kawai, Takahiro The theory of holonomic systems with regular singularities and its relevance to physical problems, Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Volume 126 (1980), p. 5 | DOI:10.1007/3-540-09996-4_28
  • Kashiwara, M.; Schapira, P. Micro-hyperbolic systems, Acta Mathematica, Volume 142 (1979) no. 0, p. 1 | DOI:10.1007/bf02395056
  • Ôaku, Toshinori Micro-local Cauchy problems and local boundary value problems, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Volume 55 (1979) no. 4 | DOI:10.3792/pjaa.55.136
  • Kashiwara, M.; Schapira, P. Probleme de Cauchy pour les systems d'equations differentielles et microdifferentielles dans le domaine complexe, Equations aux Dérivées Partielles, Volume 660 (1978), p. 117 | DOI:10.1007/bfb0082298
  • Bony, Jean-Michel Prolongement a la frontiere des solutions du probleme des derivees obliques, Equations aux Dérivées Partielles, Volume 660 (1978), p. 47 | DOI:10.1007/bfb0082293
  • Kashiwara, Masaki; Schapira, Pierre Probl�me de Cauchy pour les syst�mes microdiff�rentiels dans le domaine complexe, Inventiones Mathematicae, Volume 46 (1978) no. 1, p. 17 | DOI:10.1007/bf01390101
  • Bony, Jean-Michel Hyperfonctions et équations aux dérivées partielles d’après M. Sato, T. Kawai et M. Kashiwara], Séminaire Bourbaki vol. 1976/77 Exposés 489–506, Volume 677 (1978), p. 73 | DOI:10.1007/bfb0070755

Cité par 41 documents. Sources : Crossref