On définit la notion de volume dans un espace feuilleté. Si
The notion of the “volume" of a leaf in a foliated space is defined. If
@article{AIF_1976__26_1_265_0, author = {Epstein, D. B. A.}, title = {Foliations with all leaves compact}, journal = {Annales de l'Institut Fourier}, pages = {265--282}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {26}, number = {1}, year = {1976}, doi = {10.5802/aif.607}, mrnumber = {54 #8664}, zbl = {0313.57017}, language = {en}, url = {https://numdam.org/articles/10.5802/aif.607/} }
Epstein, D. B. A. Foliations with all leaves compact. Annales de l'Institut Fourier, Tome 26 (1976) no. 1, pp. 265-282. doi : 10.5802/aif.607. https://numdam.org/articles/10.5802/aif.607/
[1] Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie, Bruxelles (1950), 29-55. | MR | Zbl
,[2] Periodic flows on 3-manifolds, Annals of Math., 95 (1972), 68-82. | MR | Zbl
,[3] Variétés feuilletées, Ann. Scuola Normale Sup. Pisa, 16 (1962), 367-397. | Numdam | MR | Zbl
,[4] Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comm. Math. Helv., 32 (1958), 248-329. | MR | Zbl
,[5] Topological Transformation Groups, Inter-Science, New York (1955). | MR | Zbl
and ,[6] C1 -actions of compact Lie groups on compact manifolds are C1 -equivalent to C∞ -actions, Am. Jour. of Math., 92 (1970) 748-760. | MR | Zbl
,[7] University of Warwick 1974.
, ,[8] Geodesic foliations by circles, (available from University of Warwick). | Zbl
,[9] Newman's theorems on transformation groups, Topology, 8 (1969) 203-207. | MR | Zbl
,[10] Sur certaines propriétés topologiques des variétés feuilletées, Act. Sci. et Ind. N° 1183, Hermann, Paris (1952). | MR | Zbl
,[11] A homeomorphism between the 3-sphere and the sum of two solid horned spheres, Annals of Math, 56 (1952), 354-362. | MR | Zbl
,[12] Foliations with all leaves compact, (to appear).
, and ,[13] Compact Foliations, Springer-Verlag Lecture Notes 484, Differential Topology and Geometry Conference in Dijon 1974. | Zbl
,[14] Topology, Allyn and Bacon (1970). | Zbl
,[15] A counterexample to the periodic orbit conjecture, (I.H.E.S. preprint, 1975). | Numdam | Zbl
,Cité par Sources :