Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions
Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 117-141.

Let {X(t),t[0,1]n} be a stochastically continuous, separable, Gaussian process with E[X(t+h)-X(t)]2=σ2(|h|). A sufficient condition, in terms of the monotone rearrangement of σ, is obtained for X(t) to have continuous sample paths almost surely. This result is applied to a wide class of random series of functions, in particular, to random Fourier series.

Soit {X(t),t[0,1]n} un processus gaussien séparable et stochastiquement continu, satisfaisant à la condition E[X(t+h)-X(t)]2=σ2(|h|). On obtient une condition suffisante de continuité presque sûre de X(t), mise en termes de ré-arrangement monotone de σ. On fait l’application de ce résultat aux séries des fonctions aléatoires, en particulier, aux séries aléatoires de Fourier.

@article{AIF_1974__24_2_117_0,
     author = {Jain, Naresh C. and Marcus, Michael B.},
     title = {Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions},
     journal = {Annales de l'Institut Fourier},
     pages = {117--141},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {24},
     number = {2},
     year = {1974},
     doi = {10.5802/aif.508},
     mrnumber = {54 #1356},
     zbl = {0283.60041},
     language = {en},
     url = {https://numdam.org/articles/10.5802/aif.508/}
}
TY  - JOUR
AU  - Jain, Naresh C.
AU  - Marcus, Michael B.
TI  - Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions
JO  - Annales de l'Institut Fourier
PY  - 1974
SP  - 117
EP  - 141
VL  - 24
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://numdam.org/articles/10.5802/aif.508/
DO  - 10.5802/aif.508
LA  - en
ID  - AIF_1974__24_2_117_0
ER  - 
%0 Journal Article
%A Jain, Naresh C.
%A Marcus, Michael B.
%T Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions
%J Annales de l'Institut Fourier
%D 1974
%P 117-141
%V 24
%N 2
%I Institut Fourier
%C Grenoble
%U https://numdam.org/articles/10.5802/aif.508/
%R 10.5802/aif.508
%G en
%F AIF_1974__24_2_117_0
Jain, Naresh C.; Marcus, Michael B. Sufficient conditions for the continuity of stationary gaussian processes and applications to random series of functions. Annales de l'Institut Fourier, Tome 24 (1974) no. 2, pp. 117-141. doi : 10.5802/aif.508. https://numdam.org/articles/10.5802/aif.508/

[1] R. P. Boas Jr. and M. B. Marcus, Inequalities involving a function and its inverse, SIAM J. Math. Anal., 4 (1973). | MR | Zbl

[2] Dudley R. M., The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis, 1 (1967), 290-330. | MR | Zbl

[3] R. M. Dudley, Sample functions of the Gaussian process, Ann. of Probability, 1 (1973), 66-103. | MR | Zbl

[4] X. Fernique, Continuité des processus Gaussiens, C.R. Acad. Sci. Paris, 258 (1964), 6058-6060. | MR | Zbl

[5] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, (1934), Cambridge, England. | JFM | Zbl

[6] N. C. Jain, Conditions for the continuity of sample paths of a Gaussian process, unpublished manuscript, (1972).

[7] N. C. Jain and G. Kallianpur, A note on the uniform convergence of stochastic processes, 41 (1970), 1360-1362. | MR | Zbl

[8] J. P. Kahane, Some random series of functions, (1968), D. C. Heath, Lexington, Mass. | MR | Zbl

[9] E. Lukacs, Characteristic functions, Second Edition, (1970), Hafner, New York. | MR | Zbl

[10] M. B. Marcus, A comparaison of continuity conditions for Gaussian processes., Ann. of Probability, 1 (1973), 123-130. | MR | Zbl

[11] M. B. Marcus, Continuity of Gaussian processes and random Fourier series, Ann. of Probability, 1 (1973), 968-981. | MR | Zbl

[12] M. B. Marcus and L. A. Shepp, Continuity of Gaussian processes., Trans. Amer. Math. Soc., 151 (1970), 377-392. | MR | Zbl

[13] J. L. Doob, Stochastic processes, (1953), John Wiley and Sons, New York. | MR | Zbl

  • Cheng, Guozheng; Fang, Xiang; Liu, Chao; Lu, Yufeng Littlewood-type theorems for random Dirichlet multipliers, Journal of Functional Analysis, Volume 288 (2025) no. 12, p. 90 (Id/No 110851) | DOI:10.1016/j.jfa.2025.110851 | Zbl:8009149
  • Fang, Xiang; Tien, Pham Trong Random analytic functions with a prescribed growth rate in the unit disk, Canadian Journal of Mathematics (2024), p. 1 | DOI:10.4153/s0008414x24000403
  • Liu, Chao Multipliers for Dirichlet type spaces by randomization, Banach Journal of Mathematical Analysis, Volume 14 (2020) no. 3, p. 935 | DOI:10.1007/s43037-019-00046-w
  • Lefèvre, Pascal; Li, Daniel; Queffélec, Hervé; Rodríguez-Piazza, Luis Thin sets of integers in harmonic analysis and p-stable random Fourier series, Journal d'Analyse Mathématique, Volume 115 (2011), pp. 187-211 | DOI:10.1007/s11854-011-0027-6 | Zbl:1310.43004
  • Jeulin, T.; Yor, M. Moyennes mobiles et semimartingales, Séminaire de Probabilités XXVII, Volume 1557 (1993), p. 53 | DOI:10.1007/bfb0087964
  • Kozachenko, Yu. V.; Pashko, A. A. Estimates on the distribution of the supremum of a stationary Gaussian process, Ukrainian Mathematical Journal, Volume 41 (1989) no. 3, pp. 279-286 | DOI:10.1007/bf01060311 | Zbl:0716.60038
  • Kawata, Tatsuo Uniform Convergence of Random Trigonometric Series and Sample Continuity of Weakly Stationary Processes, Contributions to Probability (1981), p. 157 | DOI:10.1016/b978-0-12-274460-0.50019-9
  • Buldygin, V. V.; Kozachenko, Yu. V. Sub-Gaussian random variables, Ukrainian Mathematical Journal, Volume 32 (1981), pp. 483-489 | DOI:10.1007/bf01087176 | Zbl:0479.60012
  • Csörgő, Sándor Multivariate empirical characteristic functions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 55 (1981), pp. 203-229 | DOI:10.1007/bf00535160 | Zbl:0438.60025
  • Cuzick, Jack; Tze Lai, Leung On random Fourier series, Transactions of the American Mathematical Society, Volume 261 (1980), pp. 53-80 | DOI:10.2307/1998317 | Zbl:0434.60029
  • Marcus, M. B.; Pisier, G. Random fourier series on locally compact abelian groups, Séminaire de Probabilités XIII, Volume 721 (1979), p. 72 | DOI:10.1007/bfb0070851
  • Nanopoulos, Constantin; Nobelis, Photis Regularite et proprietes limites des fonctions aleatoires, Séminaire de Probabilités XII, Volume 649 (1978), p. 567 | DOI:10.1007/bfb0064630
  • Buldygin, V. V. Sub-Gaussian processes and convergence of random series in functional spaces, Ukrainian Mathematical Journal, Volume 29 (1977), pp. 337-345 | DOI:10.1007/bf01085798 | Zbl:0419.60037
  • Matsak, I. K. Regularity of sampling distribution functions of a random process, Ukrainian Mathematical Journal, Volume 30 (1978), pp. 186-190 | DOI:10.1007/bf01085643 | Zbl:0419.60041
  • Marcus, Michael B. Continuity and the central limit theorem for random trigonometric series, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 42 (1978), pp. 35-56 | DOI:10.1007/bf00534206 | Zbl:0382.60041
  • Fernique, X. Continuité et théorème central limité pour les transformées de Fourier des mesures aléatoires du second ordre, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 42 (1978), pp. 57-66 | DOI:10.1007/bf00534207 | Zbl:0393.60020
  • Heinkel, B. A central limit theorem in C(S), Annales Scientifiques de l'Université de Clermont-Ferrand II. Mathématiques, Volume 61 (1977), pp. 37-42 | Zbl:0358.60038
  • Hoffmann-Jørgensen, J. Probability in Banach Space, Ecole d’Eté de Probabilités de Saint-Flour VI-1976, Volume 598 (1977), p. 1 | DOI:10.1007/bfb0097492
  • Garsia, Adriano M. Combinatorial inequalities and smoothness of functions, Bulletin of the American Mathematical Society, Volume 82 (1976), pp. 157-170 | DOI:10.1090/s0002-9904-1976-13975-4 | Zbl:0351.26005
  • Marcus, Michael B. Some new results on central limit theorems for C(S)-valued random variables, Probability in Banach Spaces, Volume 526 (1976), p. 167 | DOI:10.1007/bfb0082352
  • Jain, Naresh C.; Marcus, Michael B. Central limit theorems for C(S)-valued random variables, Journal of Functional Analysis, Volume 19 (1975), pp. 216-231 | DOI:10.1016/0022-1236(75)90056-7 | Zbl:0305.60004
  • Jain, Naresh C.; Marcus, Michael B. Integrability of infinite sums of independent vector-valued random variables, Transactions of the American Mathematical Society, Volume 212 (1975), pp. 1-36 | DOI:10.2307/1998610 | Zbl:0318.60036

Cité par 22 documents. Sources : Crossref, zbMATH