Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques
Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 361-432.

Les propriétés générales des fonctions plurisousharmoniques définies sur une partie f-ouverte d’un e.v.t. E sont établies. Lorsque E est supposé quasi-complet, l’auteur généralise la mesure de Cauchy aux “polycercles”. À l’aide de ces mesures, l’auteur étend à la dimension infinie quelques propriétés des ensembles strictement polaires.

Dans une seconde partie, la caractérisation de Bremermann des ensembles pseudo-convexes est étendue à une variété X, étalée sur un espace de Banach E. Puis en supposant E séparable, l’auteur construit sur l’anneau OX des fonctions holomorphes sur X, une topologie T, bornologique, plus fine que celle (Ip introduite par L. Nachbin). Elle permet à l’auteur de démontrer que, pour tout couple de prolongement (X,Y), les espace OX et OY sont topologiquement isomorphes et que (X,Y) est aussi un couple de prolongement pour les fonctions holomorphes à valeurs vectorielles ; de plus, l’auteur munit une partie E(X) du spectre de OX d’une structure de variété étalée telle que (X,E(X)) soit un couple de prolongement.

Le dernier chapitre est une généralisation des espaces de Hardy aux domaines bornés, disqués, de Cn.

The general properties of plurisubharmonic functions whose set of definition is a finitely-open set of a linear topological space E, are proved. If E is assumed locally-convex and quasi-complete, the author generalises the Cauchy measure to “polycircles”; so, some properties of strictly polar sets in Frechet space are extended in infinitely dimension. The Bremermann characterisation of pseudo-convex sets is extended to a variety X spread over a Banach space E. These, when E is separable a new bornological topology, finer than L. Nachbin topology is defined on the ring Ox of scalar analytic functions on X. So let (X,Y) a scalar extension pair, then GxGy is a topological isomorphism and (X,Y) is an extension pair for vector valued functions. The spectrum of Gx is studied. The end of this work is a generalisation of Hardy spaces to bounded circular domain in Cn.

@article{AIF_1970__20_1_361_0,
     author = {C{\oe}ur\'e, G\'erard},
     title = {Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications \`a l'\'etude des fonctions analytiques},
     journal = {Annales de l'Institut Fourier},
     pages = {361--432},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {20},
     number = {1},
     year = {1970},
     doi = {10.5802/aif.345},
     mrnumber = {43 #564},
     zbl = {0187.39003},
     language = {fr},
     url = {https://numdam.org/articles/10.5802/aif.345/}
}
TY  - JOUR
AU  - Cœuré, Gérard
TI  - Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques
JO  - Annales de l'Institut Fourier
PY  - 1970
SP  - 361
EP  - 432
VL  - 20
IS  - 1
PB  - Institut Fourier
PP  - Grenoble
UR  - https://numdam.org/articles/10.5802/aif.345/
DO  - 10.5802/aif.345
LA  - fr
ID  - AIF_1970__20_1_361_0
ER  - 
%0 Journal Article
%A Cœuré, Gérard
%T Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques
%J Annales de l'Institut Fourier
%D 1970
%P 361-432
%V 20
%N 1
%I Institut Fourier
%C Grenoble
%U https://numdam.org/articles/10.5802/aif.345/
%R 10.5802/aif.345
%G fr
%F AIF_1970__20_1_361_0
Cœuré, Gérard. Fonctions plurisousharmoniques sur les espaces vectoriels topologiques et applications à l'étude des fonctions analytiques. Annales de l'Institut Fourier, Tome 20 (1970) no. 1, pp. 361-432. doi : 10.5802/aif.345. https://numdam.org/articles/10.5802/aif.345/

[1] Alexander, Thèse (multigraphiée) (1968).

[2] S. Bochner, Classes of holomorphic functions of several variables. Proc. Nat. Ac. Sc. U.S.A. (vol. 46) 720-724. (1960). | Zbl

[3] S. Bochner et W.T. Martin, Several complex variables Princeton (1948). | MR | Zbl

[4] N. Bourbaki, Intégration Chap. 5.

[5] M. Brelot, Allure des fonctions sousharmoniques à la frontière, Math. Nach. (t. 4) 298-307 (1950). | MR | Zbl

[6] M. Brelot, G. Choquet, J. Deny, Théorie du Potentiel, Séminaire de la Fac. Sc, de Paris (1958).

[7,a] H.J. Bremermann, Math. Ann. 173-186 (1958). | Zbl

[7,b] Die characterisierung von Regulartästreigebieten (Thèse). Munster 1951.

[8] G. Cœure, Cr. Ac. Sc. (t. 267) 473-476 et 816 (1968).

[9] G. Cœure, Cr. Ac. Sc. (t. 267) 440-442 (1968).

[10] G. Cœure, Cr. Ac. Sc. (t. 262) 177-180 (1966).

[11] G. Cœure, Cr. Ac. Sc. (t. 264) 287-290 (1967).

[12] A. Douady, (Thèse) Ann. de l'Institut Fourier (t. XVI) (1966). | Numdam | Zbl

[13] H. Furstenberg, A Poisson Formula. Ann. of Math. (t. 77) 325-385 (1966).

[14] I.M. Gel'Fand et N.Ya. Vilenkin, Generalised functions (Vol. 4), Acad. Press (1964).

[15] A. Grothendieck, Espaces vectoriels topologiques, Sao-Paulo Univ. (1964).

[16] G. Gunning et H. Rossi, Analytic functions of several complex variables, Prentice Hall (1966). | Zbl

[17] G.H. Hardy, Proc. London Math. Soc. (T. 14) (1915).

[18] E. Hille et G. Phillips, Functional analysis and semi-groups, Am. Math. Soc. Publ. (Vol. XXXI) (1957).

[19] S. Kakutani, Ann. of Math. (T. 49) (1948).

[20] C. O. Kieselman, On entire functions of exponential type. Acta Math. (T. 117) p. 1-35 (1967). | Zbl

[21] Y. Kusunoki, J. Math. Kyoto Univ, 123-134 (1964). | Zbl

[22] P. Lelong, Fonctions plurisousharmoniques, Ann. Ec. Norm. Sup. (t. 62) (p. 301-338) (1945). | Numdam | MR | Zbl

[23,a] P. Lelong, Séminaires d'analyse de la Fac. Sc. de Paris (1968) n° 71 et 116.

[23,b] “Fonctionnelles analytiques et fonctions entières” Presse de Montréal (1968). | Zbl

[24,a] P. Lelong, Fonctions plurisousharmoniques et fonctions analytiques de variables réelles. Ann. Inst. Fourier (t. XI) (1961). | Numdam | MR | Zbl

[24,b] Fonctions entières de type exponentielle. Ann. Inst. Fourier. (t. 10) fasc. 2 (1966). | Numdam

[25] P. Lelong, Cr. Ac. Sc. (t. 267) p. 916-918 (1968). | Zbl

[26,a] P. Lelong, Domaines convexes par rapport aux fonctions plurisousharmoniques. Journal d'Anal. Math. (V. 2) p. 179-207 (1952). | MR | Zbl

[26,b] Fonctions plurisousharmoniques et formes différentielles positives. Gordon and Beach (1969).

[27] Ph. Noverraz, Thèse à paraître Ann. Inst. Fourier (1969).

[28] M.A. Zorn, Characterisation of analytic functions in Banach spaces. Ann. of Math. (t. 12) p. 585-597 (1945). | Zbl

Cité par Sources :