On s’intéresse à des problèmes hyperboliques linéaires dont les coefficients sont discontinus au travers de l’hypersurface non-caractéristique
We introduce small viscosity solutions of hyperbolic systems with discontinuous coefficients accross the fixed noncharacteristic hypersurface
@article{AFST_2009_6_18_2_397_0, author = {Fornet, Bruno}, title = {Viscous approach for {Linear} {Hyperbolic} {Systems} with {Discontinuous} {Coefficients}}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {397--443}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 18}, number = {2}, year = {2009}, doi = {10.5802/afst.1209}, zbl = {1182.35030}, mrnumber = {2562832}, language = {en}, url = {https://numdam.org/articles/10.5802/afst.1209/} }
TY - JOUR AU - Fornet, Bruno TI - Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2009 SP - 397 EP - 443 VL - 18 IS - 2 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - https://numdam.org/articles/10.5802/afst.1209/ DO - 10.5802/afst.1209 LA - en ID - AFST_2009_6_18_2_397_0 ER -
%0 Journal Article %A Fornet, Bruno %T Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2009 %P 397-443 %V 18 %N 2 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U https://numdam.org/articles/10.5802/afst.1209/ %R 10.5802/afst.1209 %G en %F AFST_2009_6_18_2_397_0
Fornet, Bruno. Viscous approach for Linear Hyperbolic Systems with Discontinuous Coefficients. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 2, pp. 397-443. doi : 10.5802/afst.1209. https://numdam.org/articles/10.5802/afst.1209/
[1] Bachmann (F.).— Analysis of a scalar conservation law with a flux function with discontinuous coefficients, Adv. Diff. Eq. 11-12, p. 1317-1338 (2004). | MR | Zbl
[2] Bachmann (F.), Vovelle (J.).— Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients, C.P.D.E, 31, p. 371-395 (2006). | MR | Zbl
[3] Bouchut (F.), James (F.).— One-dimensional transport equations with discontinuous coefficients, Nonlin. Anal., 32, p. 891-933 (1998). | MR | Zbl
[4] Bouchut (F.), James (F.), Mancini (S.).— Uniqueness and weak stability for multi-dimensional transport equations with one-sided Lipschitz coefficient, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), IV, p. 1-25 (2005). | Numdam | MR
[5] Chazarain (J.), Piriou (A.).— Introduction to the theory of linear partial differential equations. translated from the french, Studies in Mathematics and its Applications, 14 , North Holland Publishing Co., Amsterdam-New York,1982. | MR | Zbl
[6] Crasta (G.), LeFloch (P. G.).— Existence result for a class of nonconservative and nonstrictly hyperbolic systems, Commun. Pure Appl. Anal., 1(4), p. 513-530 (2002). | MR | Zbl
[7] DiPerna (R.J.), Lions (P.-L.).— Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98, p. 511-547 (1989). | MR | Zbl
[8] Fornet (B.).— Two Results concerning the Small Viscosity Solution of Linear Scalar Conservation Laws with Discontinuous Coefficients, HAL (2007).
[9] Fornet (B.).— The Cauchy problem for 1-D linear nonconservative hyperbolic systems with possibly expansive discontinuity of the coefficient: a viscous approach, Vol 245 pp. 2440-2476 (2008). | MR | Zbl
[10] Gallouët (T.).— Hyperbolic equations and systems with discontinuous coefficients or source terms, 10 pages, Proceedings of Equadiff-11, Bratislava, Slovaquia (July 25-29, 2005).
[11] Guès (O.), Métivier (G.), Williams (M.), Zumbrun (K.).— Existence and stability of multidimensional shock fronts in the vanishing viscosity limit, Arch. Rat. Mech. Anal. 175 p. 151-244 (2004). | MR | Zbl
[12] Guès (O.), Williams (M.).— Curved shocks as viscous limits: a boundary problem approach, Indiana Univ. Math. J., 51 (2002), 421-450. | MR | Zbl
[13] Hayes (B. T.), LeFloch (P. G.).— Measure solutions to a strictly hyperbolic system of conservation laws Nonlinearity, 9(6), p. 1547-1563 (1996). | MR | Zbl
[14] LeFloch (P. G.).— An existence and uniqueness result for two nonstrictly hyperbolic systems. In Nonlinear evolution 271 equations that change type, vol. 27 of IMA Vol. Math. Appl. (1990), 126-138. Springer, New York. | MR | Zbl
[15] LeFloch (P. G.), Tzavaras (A.E.).— Representation of weak limits and definition of nonconservartive products, SIAM J. Math. Anal. 30, p. 1309-1342 (1999). | MR | Zbl
[16] Métivier (G.).— Small Viscosity and Boundary Layer Methods : Theory, Stability Analysis, and Applications, Birkhauser (2003). | MR | Zbl
[17] Métivier (G.), Zumbrun (K.).— Large Viscous Boundary Layers for Noncharacteristic Nonlinear Hyperbolic Problems, Mem. Amer. Math. Soc. 175, no. 826, vi+107 pp (2005). | MR | Zbl
[18] Métivier (G.), Zumbrun (K.).— Symmetrizers and Continuity of Stable Subspaces for Parabolic-Hyperbolic Boundary Value Problems, Disc. Cont. Dyn. Syst., 11, p. 205-220 (2004). | MR | Zbl
[19] Poupaud (F.), Rascle (M.).— Measure solutions to the linear multidimensional transport equation with discontinuous coefficients, Comm. Diff. Equ. 22, p. 337-358 (1997). | MR | Zbl
[20] Rousset (F.).— Viscous approximation of strong shocks of systems of conservation laws, SIAM J. Math. Anal. 35 (2003), 492-519. | MR | Zbl
Cité par Sources :