A martingale control variate method for option pricing with stochastic volatility
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 40-54.

A generic control variate method is proposed to price options under stochastic volatility models by Monte Carlo simulations. This method provides a constructive way to select control variates which are martingales in order to reduce the variance of unbiased option price estimators. We apply a singular and regular perturbation analysis to characterize the variance reduced by martingale control variates. This variance analysis is done in the regime where time scales of associated driving volatility processes are well separated. Numerical results for European, Barrier, and American options are presented to illustrate the effectiveness and robustness of this martingale control variate method in regimes where these time scales are not so well separated.

DOI : 10.1051/ps:2007005
Classification : 65C05, 62P05
Mots-clés : option pricing, Monte Carlo, control variates, stochastic volatility, multiscale asymptotics
@article{PS_2007__11__40_0,
     author = {Fouque, Jean-Pierre and Han, Chuan-Hsiang},
     title = {A martingale control variate method for option pricing with stochastic volatility},
     journal = {ESAIM: Probability and Statistics},
     pages = {40--54},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007005},
     mrnumber = {2299646},
     language = {en},
     url = {https://numdam.org/articles/10.1051/ps:2007005/}
}
TY  - JOUR
AU  - Fouque, Jean-Pierre
AU  - Han, Chuan-Hsiang
TI  - A martingale control variate method for option pricing with stochastic volatility
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 40
EP  - 54
VL  - 11
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/ps:2007005/
DO  - 10.1051/ps:2007005
LA  - en
ID  - PS_2007__11__40_0
ER  - 
%0 Journal Article
%A Fouque, Jean-Pierre
%A Han, Chuan-Hsiang
%T A martingale control variate method for option pricing with stochastic volatility
%J ESAIM: Probability and Statistics
%D 2007
%P 40-54
%V 11
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/ps:2007005/
%R 10.1051/ps:2007005
%G en
%F PS_2007__11__40_0
Fouque, Jean-Pierre; Han, Chuan-Hsiang. A martingale control variate method for option pricing with stochastic volatility. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 40-54. doi : 10.1051/ps:2007005. https://numdam.org/articles/10.1051/ps:2007005/

[1] G. Barone-Adesi and R.E. Whaley, Efficient Analytic Approximation of American Option Values. J. Finance 42 (1987) 301-320.

[2] R. Bellman, Stability Theory of Differential Equations. McGraw-Hill (1953). | MR | Zbl

[3] E. Clement, D. Lamberton, P. Protter, An Analysis of a Least Square Regression Method for American Option Pricing. Finance and Stochastics 6 (2002) 449-471. | Zbl

[4] J.-P. Fouque and C.-H. Han, A Control Variate Method to Evaluate Option Prices under Multi-Factor Stochastic Volatility Models, submitted, 2004. | MR

[5] J.-P. Fouque and C.-H. Han, Variance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-factor Stochastic Volatility Models. Quantitative Finance 4 (2004) 597-606.

[6] J.-P. Fouque, G. Papanicolaou and R. Sircar, Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press (2000). | MR | Zbl

[7] J.-P. Fouque, R. Sircar and K. Solna, Stochastic Volatility Effects on Defaultable Bonds. Appl. Math. Finance 13 (2006) 215-244. | Zbl

[8] J.-P. Fouque, G. Papanicolaou, R. Sircar and K. Solna, Multiscale Stochastic Volatility Asymptotics. SIAM J. Multiscale Modeling and Simulation 2 (2003) 22-42. | Zbl

[9] P. Glasserman, Monte Carlo Methods in Financial Engineering. Springer Verlag (2003). | MR | Zbl

[10] F. Longstaff and E. Schwartz, Valuing American Options by Simulation: A Simple Least-Squares Approach. Rev. Financial Studies 14 (2001) 113-147.

[11] B. Oksendal, Stochastic Differential Equations: An introduction with Applications. Universitext, 5th ed., Springer (1998). | MR | Zbl

[12] P. Wilmott , S. Howison and J. Dewynne, Mathematics of Financial Derivatives: A Student Introduction. Cambridge University Press (1995). | MR | Zbl

  • Zhang, Suhua; A, Chunxiang; Lai, Yongzeng Efficient multiple control variate method with applications to exotic option pricing, Communications in Statistics - Theory and Methods, Volume 50 (2021) no. 6, p. 1275 | DOI:10.1080/03610926.2019.1648829
  • Xu, Chenglong; Ma, Junmei; Tian, Yiming Least-square-based control variate method for pricing options under general factor models, International Journal of Computer Mathematics, Volume 96 (2019) no. 6, p. 1121 | DOI:10.1080/00207160.2018.1442925
  • Liang, Yijuan; Xu, Xiuchuan Variance and Dimension Reduction Monte Carlo Method for Pricing European Multi-Asset Options with Stochastic Volatilities, Sustainability, Volume 11 (2019) no. 3, p. 815 | DOI:10.3390/su11030815
  • Han, Chuan-Hsiang; Kuo, Chien-Liang Monte Carlo calibration to implied volatility surface under volatility models, Japan Journal of Industrial and Applied Mathematics, Volume 34 (2017) no. 3, p. 763 | DOI:10.1007/s13160-017-0270-z
  • Huang, Wanwan; Ewald, Brian; Ökten, Giray CAM Stochastic Volatility Model for Option Pricing, Mathematical Problems in Engineering, Volume 2016 (2016), p. 1 | DOI:10.1155/2016/5496945
  • Agarwal, Ankush; Juneja, Sandeep; Sircar, Ronnie American options under stochastic volatility: control variates, maturity randomization multiscale asymptotics, Quantitative Finance, Volume 16 (2016) no. 1, p. 17 | DOI:10.1080/14697688.2015.1068443
  • Han, Chuan-Hsiang; Lin, Yu-Tuan, 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS) (2014), p. 1023 | DOI:10.1109/padsw.2014.7097926
  • HAN, CHUAN-HSIANG; LIU, WEI-HAN; CHEN, TZU-YING VaR/CVaR ESTIMATION UNDER STOCHASTIC VOLATILITY MODELS, International Journal of Theoretical and Applied Finance, Volume 17 (2014) no. 02, p. 1450009 | DOI:10.1142/s0219024914500095
  • Agarwal, Ankush; Juneja, Sandeep; Sircar, Ronnie American Options Under Stochastic Volatility: Control Variates, Maturity Randomization Multiscale Asymptotics, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2520639
  • Han, Chuan-Hsiang; Liu, Wei-Han; Chen, Tzu-Ying VaR/CVaR Estimation Under Stochastic Volatility Models, SSRN Electronic Journal (2013) | DOI:10.2139/ssrn.2202032
  • Molina, German; Han, Chuan-Hsiang; Fouque, Jean-Pierre McMC Estimation of Multiscale Stochastic Volatility Models, Handbook of Quantitative Finance and Risk Management (2010), p. 1109 | DOI:10.1007/978-0-387-77117-5_71
  • Han, Chuan-Hsiang; Lai, Yongzeng A smooth estimator for MC/QMC methods in finance, Mathematics and Computers in Simulation, Volume 81 (2010) no. 3, p. 536 | DOI:10.1016/j.matcom.2010.07.013
  • Han, Chuan-Hsiang; Fouque, Jean-Pierre Asymmetric Variance Reduction for Pricing American Options, Special Volume: Mathematical Modeling and Numerical Methods in Finance, Volume 15 (2009), p. 169 | DOI:10.1016/s1570-8659(08)00004-5

Cité par 13 documents. Sources : Crossref