We investigate the small deviations under various norms for stable processes defined by the convolution of a smooth function
Mots-clés : entropy numbers, fractional Ornstein-Uhlenbeck processes, Riemann-Liouville processes, small ball probabilities, stochastic convolutions, wavelets
@article{PS_2007__11__327_0, author = {Aurzada, Frank and Simon, Thomas}, title = {Small ball probabilities for stable convolutions}, journal = {ESAIM: Probability and Statistics}, pages = {327--343}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007022}, mrnumber = {2339296}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2007022/} }
TY - JOUR AU - Aurzada, Frank AU - Simon, Thomas TI - Small ball probabilities for stable convolutions JO - ESAIM: Probability and Statistics PY - 2007 SP - 327 EP - 343 VL - 11 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ps:2007022/ DO - 10.1051/ps:2007022 LA - en ID - PS_2007__11__327_0 ER -
Aurzada, Frank; Simon, Thomas. Small ball probabilities for stable convolutions. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 327-343. doi : 10.1051/ps:2007022. https://numdam.org/articles/10.1051/ps:2007022/
[1] Duality of metric entropy. Ann. Math. (2) 159 (2004) 1213-1328. | Zbl
, and ,[2] Zbl
., Metric entropy and the small deviation problem for stable processes. To appear in Prob. Math. Stat. (2006). |[3] Small ball estimates for Brownian motion under a weighted sup-norm. Studia Sci. Math. Hungar. 36 (2000) 275-289. | Zbl
and ,[4] On the first exit time of a completely asymmetric stable process from a finite interval. Bull. London Math. Soc. 28 (1996) 514-520. | Zbl
,[5] Fractional Ornstein-Uhlenbeck Processes. Elec. J. Probab. 8 (2003) 1-14. | EuDML | Zbl
, and ,[6] Function spaces, entropy numbers, differential operators. Cambridge University Press (1996). | MR | Zbl
and ,[7] Some properties of fractional integrals I. Math. Z. 27 (1927) 565-606. | EuDML | JFM
and ,[8] Bond pricing and the term structure of interest rate: A new methodology for contingent claim valuation. Econometrica 60 (1992) 77-105. | Zbl
, and ,[9] Metric Entropy and the Small Ball Problem for Gaussian Measures. J. Func. Anal. 116 (1993) 113-157. | Zbl
and ,[10] Two results on continuity and boundedness of stochastic convolutions. Ann. Inst. Henri Poincaré, Probab. et Stat. 42 (2006) 553-566. | Numdam | Zbl
, and ,[11] A Gaussian correlation inequality and its application to small ball probabilities. Elec. Comm. Probab. 4 (1999) 111-118. | Zbl
,
[12] Small ball probabilities for Gaussian Markov processes under the
[13] Existence of small ball constants for fractional Brownian motions. C. R. Acad. Sci. Paris 326 (1998) 1329-1334. | Zbl
and ,[14] Approximation, metric entropy and the small ball problem for Gaussian measures. Ann. Probab. 27 (1999) 1556-1578. | Zbl
and ,[15] Small Deviations of Stable Processes via Metric Entropy. J. Theoret. Probab. 17 (2004) 261-284. | Zbl
and ,[16] Small deviations for fractional stable processes. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 725-752. | Numdam | Zbl
and ,[17] Long-Memory Stable Ornstein-Uhlenbeck Processes. Elec. J. Probab. 8 (2003) 1-18. | Zbl
and ,[18] Fractional Integrals and Derivatives. Gordon and Breach (1993). | MR | Zbl
, and ,[19] Stable Non-Gaussian Random Processes. Chapman & Hall (1994). | MR | Zbl
and ,[20] Sample path properties of ergodic self-similar processes. Osaka J. Math. 26 (1989) 159-189. | Zbl
,[21] Fractional Ornstein-Uhlenbeck Lévy Processes and the Telecom Process: Upstairs and Downstairs. Signal Processing 85 (2005) 1523-1545.
and ,Cité par Sources :