Given an
Mots-clés : regular histograms, density estimation, penalized maximum likelihood, model selection
@article{PS_2006__10__24_0, author = {Birg\'e, Lucien and Rozenholc, Yves}, title = {How many bins should be put in a regular histogram}, journal = {ESAIM: Probability and Statistics}, pages = {24--45}, publisher = {EDP-Sciences}, volume = {10}, year = {2006}, doi = {10.1051/ps:2006001}, mrnumber = {2197101}, zbl = {1136.62329}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2006001/} }
TY - JOUR AU - Birgé, Lucien AU - Rozenholc, Yves TI - How many bins should be put in a regular histogram JO - ESAIM: Probability and Statistics PY - 2006 SP - 24 EP - 45 VL - 10 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ps:2006001/ DO - 10.1051/ps:2006001 LA - en ID - PS_2006__10__24_0 ER -
Birgé, Lucien; Rozenholc, Yves. How many bins should be put in a regular histogram. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 24-45. doi : 10.1051/ps:2006001. https://numdam.org/articles/10.1051/ps:2006001/
[1] A new look at the statistical model identification. IEEE Trans. Automatic Control 19 (1974) 716-723. | Zbl
,[2] Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999) 301-415. | Zbl
, and .[3] From model selection to adaptive estimation, in Festschrift for Lucien Le Cam: Research Papers in Probability and Statistics, D. Pollard, E. Torgersen and G. Yang, Eds., Springer-Verlag, New York (1997) 55-87. | Zbl
and ,[4] Gaussian model selection. J. Eur. Math. Soc. 3 (2001) 203-268. | Zbl
and ,[5] Modified Akaike's criterion for histogram density estimation. Technical Report. Université Paris-Sud, Orsay (1999).
,[6] Sélection d'histogrammes à l'aide d'un critère de type Akaike. CRAS 330 (2000) 729-732. | Zbl
,[7] The construction of optimal histograms. Commun. Stat., Theory Methods 17 (1988) 2921-2931. | Zbl
,[8] A Course in Density Estimation. Birkhäuser, Boston (1987). | MR | Zbl
,
[9] Nonparametric Density Estimation: The
[10] Combinatorial Methods in Density Estimation. Springer-Verlag, New York (2001). | MR | Zbl
and ,
[11] On the histogram as a density estimator:
[12] Akaike's information criterion and Kullback-Leibler loss for histogram density estimation. Probab. Theory Relat. Fields 85 (1990) 449-467. | Zbl
,[13] On stochastic complexity and nonparametric density estimation. Biometrika 75 (1988) 705-714. | Zbl
and ,[14] Selecting the number of bins in a histogram: A decision theoretic approach. J. Stat. Plann. Inference 61 (1997) 49-59. | Zbl
and ,[15] Some new methods for wavelet density estimation. Sankhya, Series A 63 (2001) 394-411.
, and ,[16] On two recent papers of Y. Kanazawa. Statist. Probab. Lett. 24 (1995) 269-271. | Zbl
,[17] Hellinger distance and Akaike's information criterion for the histogram. Statist. Probab. Lett. 17 (1993) 293-298. | Zbl
,[18] Asymptotic Methods in Statistical Decision Theory. Springer-Verlag, New York (1986). | MR | Zbl
,[19] Asymptotics in Statistics: Some Basic Concepts. Second Edition. Springer-Verlag, New York (2000). | MR | Zbl
and ,[20] Stochastic complexity and the MDL principle. Econ. Rev. 6 (1987) 85-102. | Zbl
,[21] Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9 (1982) 65-78. | Zbl
,[22] On optimal and databased histograms. Biometrika 66 (1979) 605-610. | Zbl
,[23] The choice of a class interval. J. Am. Stat. Assoc. 21 (1926) 65-66.
,[24] Akaike's information criterion and the histogram. Biometrika. 74 (1987) 636-639. | Zbl
,[25] The maximal smoothing principle in density estimation. J. Am. Stat. Assoc. 85 (1990) 470-477.
,[26] Data-based choice of histogram bin width. Am. Statistician 51 (1997) 59-64.
,Cité par Sources :