We study the linearized water-wave problem in a bounded domain (e.g. a finite pond of water) of
Mots-clés : linear water-wave problem, cuspidal domain, radiation condition, scattering matrix
@article{M2AN_2011__45_5_947_0, author = {Nazarov, Sergey A. and Taskinen, Jari}, title = {Radiation conditions at the top of a rotational cusp in the theory of water-waves}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {947--979}, publisher = {EDP-Sciences}, volume = {45}, number = {5}, year = {2011}, doi = {10.1051/m2an/2011004}, mrnumber = {2817552}, zbl = {1267.76013}, language = {en}, url = {https://numdam.org/articles/10.1051/m2an/2011004/} }
TY - JOUR AU - Nazarov, Sergey A. AU - Taskinen, Jari TI - Radiation conditions at the top of a rotational cusp in the theory of water-waves JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2011 SP - 947 EP - 979 VL - 45 IS - 5 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/m2an/2011004/ DO - 10.1051/m2an/2011004 LA - en ID - M2AN_2011__45_5_947_0 ER -
%0 Journal Article %A Nazarov, Sergey A. %A Taskinen, Jari %T Radiation conditions at the top of a rotational cusp in the theory of water-waves %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2011 %P 947-979 %V 45 %N 5 %I EDP-Sciences %U https://numdam.org/articles/10.1051/m2an/2011004/ %R 10.1051/m2an/2011004 %G en %F M2AN_2011__45_5_947_0
Nazarov, Sergey A.; Taskinen, Jari. Radiation conditions at the top of a rotational cusp in the theory of water-waves. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 45 (2011) no. 5, pp. 947-979. doi : 10.1051/m2an/2011004. https://numdam.org/articles/10.1051/m2an/2011004/
[1] On the structure of the spectrum of the elasticity problem for a body with a super-sharp spike. Sibirsk. Mat. Zh. 50 (2009) 746-756. (English transl. Siberian Math. J. 50 (2009).) | MR | Zbl
and ,[2] Spectral theory of self-adjoint operators in Hilber space. Reidel Publ. Company, Dordrecht (1986). | Zbl
and ,[3] Mathematical analysis of guided water waves. SIAM J. Appl. Math. 53 (1993). | MR | Zbl
, ,[4] Asymptotics of solutions of the Neumann problem in a domain with closely posed components of the boundary. Asymptotic Analysis 62 (2009) 41-88. | MR | Zbl
, and ,[5] The “absorption" effect caused by beak-shaped boundary irregularity for elastic waves. Dokl. Ross. Akad. Nauk. 425 (2009) 182-186. (English transl. Doklady Physics 54 (2009) 146-150.) | MR
, and ,[6] Criteria for the existence of the essential spectrum for beak-shaped elastic bodies. J. Math. Pures Appl. (to appear)
, and ,[7] Robin boundary value problems on arbitrary domains. Trans. Amer. Math. Soc. 352 (2000) 4207-4236. | MR | Zbl
,[8] A Faber-Krahn inequality for Robin problems in any space dimension. Math. Annal. 335 (2006) 767-785. | MR | Zbl
,[9] Elliptic partial differential equations of second order. Die Grundlehren der mathematischen Wissenschaften 224. Springer, Berlin (1977). | MR | Zbl
and ,
[10] The eigenvalues of
[11] Boundary value problems for elliptic problems in domains with conical or corner points. Trudy Moskov. Mat. Obshch. 16 (1967) 209-292. (English transl. Trans. Moscow Mat. Soc. 16 (1967) 227-313.) | MR | Zbl
,[12] Elliptic boundary value problems in domains with point singularities. Mathematical Surveys and Monographs 52. American Mathematical Society, Providence, RI (1997). | MR | Zbl
, and ,[13] Spectral problems associated with corner singularities of solutions to elliptic equations. Mathematical Surveys and Monographs 85. American Mathematical Society, Providence, RI (2001). | MR | Zbl
, and ,[14] New type of vibration dampers utilising the effect of acoustic “black holes". Acta Acustica united with Acustica 90 (2004) 830-837.
,[15] Linear Water Waves. Cambridge University Press, Cambridge (2002). | MR | Zbl
, and ,[16] Boundary value problems of mathematical physics. Springer Verlag, New York (1985). | MR | Zbl
,[17] Non-homogeneus boundary value problems and applications (French). Dunod, Paris (1968). (English transl. Springer-Verlag, Berlin-Heidelberg-New York (1972).) | Zbl
and ,[18] Sobolev spaces, translated from the Russian by T.O. Shaposhnikova. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin (1985). | MR | Zbl
,[19] The asymptotic behavior of solutions of differential equations in Hilbert space. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972) 1080-1133; erratum, Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 709-710. | MR | Zbl
and ,[20] V.G, Mazja and B.A. Plamenevskii, On coefficients in asymptotics of solutions of elliptic boundary value problems in a domain with conical points. Math. Nachr. 76 (1977) 29-60. (Engl. transl. Amer. Math. Soc. Transl. 123 (1984) 57-89.) | MR | Zbl
[21] Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr. 81 (1978) 25-82. (Engl. transl. Amer. Math. Soc. Transl. (Ser. 2) 123 (1984) 1-56 .) | MR | Zbl
and ,[22] Imbedding and Extension Theorems for Functions on Non-Lipschitz Domains. SPbGU publishing (2006).
and ,[23] Propagation of a flexural wave in a plate whose thickness decreases smoothly to zero in a finite interval. Soviet Physics-Acoustics 34 (1988) 318-319.
,[24] Asymptotics of the solution of the Neumann problem at a point of tangency of smooth components of the boundary of the domain. Izv. Ross. Akad. Nauk. Ser. Mat. 58 (1994) 92-120. (English transl. Math. Izvestiya 44 (1995) 91-118.) | MR | Zbl
[25] On the flow of water under a still stone. Mat. Sbornik 186 (1995) 75-110. (English transl. Math. Sbornik 186 (1995) 1621-1658.) | MR | Zbl
,[26] A general scheme for averaging self-adjoint elliptic systems in multidimensional domains, including thin domains. Algebra Analiz. 7 (1995) 1-92. (English transl. St. Petersburg Math. J. 7 (1996) 681-748.) | MR | Zbl
,[27] The polynomial property of self-adjoint elliptic boundary-value problems and the algebraic description of their attributes. Uspehi Mat. Nauk. 54 (1999) 77-142. (English transl. Russ. Math. Surveys. 54 (1999) 947-1014.) | MR | Zbl
,[28] Weighted spaces with detached asymptotics in application to the Navier-Stokes equations. in: Advances in Mathematical Fluid Mechanics. Paseky, Czech. Republic (1999) 159-191. Springer-Verlag, Berlin (2000). | MR | Zbl
,[29] The Navier-Stokes problem in a two-dimensional domain with angular outlets to infinity. Zap. Nauchn. Sem. St.-Petersburg Otdel. Mat. Inst. Steklov 257 (1999) 207-227. (English transl. J. Math. Sci. 108 (2002) 790-805.) | MR | Zbl
,[30] The spectrum of the elasticity problem for a spiked body. Sibirsk. Mat. Zh. 49 (2008) 1105-1127. (English transl. Siberian Math. J. 49 (2008) 874-893.) | EuDML | MR | Zbl
,[31] On the spectrum of the Steklov problem in peak-shaped domains. Trudy St.-Petersburg Mat. Obshch. 14 (2008) 103-168. (English transl. Am. Math. Soc. Transl Ser. 2.) | MR | Zbl
,[32] On the essential spectrum of boundary value problems for systems of differential equations in a bounded peak-shaped domain. Funkt. Anal. i Prilozhen. 43 (2009) 55-67. (English transl. Funct. Anal. Appl. 43 (2009).) | MR | Zbl
.[33] On steady Stokes and Navier-Stokes problems with zero velocity at infinity in a three-dimensional exterior domain. Journal of Mathematics of Kyoto University 40 (2000) 475-49. | MR | Zbl
and ,[34] Radiation principles for self-adjoint elliptic problems. Probl. Mat. Fiz. 13. 192-244. Leningrad: Leningrad Univ. 1991 (Russian). | MR
and ,[35] Elliptic problems in domains with piecewise smooth boundaries. Walter be Gruyter, Berlin, New York (1994). | MR | Zbl
and ,[36] Asymptotic behavior of the stress-strain state near a spatial singularity of the boundary of the beak tip type. Prikl. Mat. Mekh. 57 (1993) 130-149. (English transl. J. Appl. Math. Mech. 57 (1993) 887-902.) | MR | Zbl
and ,[37] On the spectrum of the Steklov problem in a domain with a peak. Vestnik St. Petersburg Univ. Math. 41 (2008) 45-52. | MR | Zbl
and ,[38] On essential and continuous spectra of the linearized water-wave problem in a finite pond. Math. Scand. 106 (2009) 1-20. | MR | Zbl
and ,[39] Another approach to elliptic boundary problems. Comm. Pure. Appl. Math. 14 (1961) 711-731. | MR | Zbl
,[40] The asymptotic behavior of the solutions of quasielliptic differential equations with operator coefficients. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 37 (1973) 1332-1375. | MR | Zbl
,[41] Water waves. The Mathematical Theory with Applications. Reprint of the 1957 original. John Wiley, New York (1992). | MR | Zbl
,[42] Trapping modes in the theory of surface waves. Proc. Camb. Phil. Soc. 47 (1951) 347-358. | MR | Zbl
,Cité par Sources :