On the curvature and torsion effects in one dimensional waveguides
ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 793-808.

We consider the Laplace operator in a thin tube of 3 with a Dirichlet condition on its boundary. We study asymptotically the spectrum of such an operator as the thickness of the tube’s cross section goes to zero. In particular we analyse how the energy levels depend simultaneously on the curvature of the tube’s central axis and on the rotation of the cross section with respect to the Frenet frame. The main argument is a Γ-convergence theorem for a suitable sequence of quadratic energies.

DOI : 10.1051/cocv:2007042
Classification : 49R50, 35P20, 78A50, 81Q15
Mots-clés : dimension reduction, Γ-convergence, curvature and torsion, waveguides
@article{COCV_2007__13_4_793_0,
     author = {Bouchitt\'e, Guy and Mascarenhas, M. Lu{\'\i}sa and Trabucho, Lu{\'\i}s},
     title = {On the curvature and torsion effects in one dimensional waveguides},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {793--808},
     publisher = {EDP-Sciences},
     volume = {13},
     number = {4},
     year = {2007},
     doi = {10.1051/cocv:2007042},
     mrnumber = {2351404},
     zbl = {1139.49043},
     language = {en},
     url = {https://numdam.org/articles/10.1051/cocv:2007042/}
}
TY  - JOUR
AU  - Bouchitté, Guy
AU  - Mascarenhas, M. Luísa
AU  - Trabucho, Luís
TI  - On the curvature and torsion effects in one dimensional waveguides
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2007
SP  - 793
EP  - 808
VL  - 13
IS  - 4
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/cocv:2007042/
DO  - 10.1051/cocv:2007042
LA  - en
ID  - COCV_2007__13_4_793_0
ER  - 
%0 Journal Article
%A Bouchitté, Guy
%A Mascarenhas, M. Luísa
%A Trabucho, Luís
%T On the curvature and torsion effects in one dimensional waveguides
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2007
%P 793-808
%V 13
%N 4
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/cocv:2007042/
%R 10.1051/cocv:2007042
%G en
%F COCV_2007__13_4_793_0
Bouchitté, Guy; Mascarenhas, M. Luísa; Trabucho, Luís. On the curvature and torsion effects in one dimensional waveguides. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 793-808. doi : 10.1051/cocv:2007042. https://numdam.org/articles/10.1051/cocv:2007042/

[1] G. Allaire and C. Conca, Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. | Zbl

[2] B. Chenaud, P. Duclos, P. Freitas and D. Krejčiřík, Geometrically induced discrete specrtum in curved tubes. Differ. Geometry Appl. 23 (2005) 95-105. | Zbl

[3] C. Conca, J. Planchard and M. Vanninathan, Fluids and periodic structures, Research in Applied Mathematics 38. Masson, Paris (1995). | MR | Zbl

[4] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser, Boston (1993). | MR | Zbl

[5] P. Duclos and P. Exner, Curvature-induced bounds states in quantum waveguides in two and tree dimensions. Rev. Math. Phys. 7 (1995) 73-102. | Zbl

[6] V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Equations. Springer-Verlag, Berlin (1994). | MR

[7] P. Kuchment, On some spectral problems of mathematical physics. Partial differential equations and inverse problems., Contemp. Math. 362. Amer. Math. Soc., Providence, RI (2004) 241-276. | Zbl

[8] J. Rubinstein, M. Schatzman, Variational problems on multiply connected thin strips. II. Convergence of the Ginzburg-Landau functional. Arch. Ration. Mech. Anal. 160 (2001) 309-324. | Zbl

[9] M. Vanninathan, Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. | Zbl

  • Gómez, Delfina; Nazarov, Sergei A.; Pérez-Martínez, Maria-Eugenia Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands, Journal of Differential Equations, Volume 270 (2021), p. 1160 | DOI:10.1016/j.jde.2020.09.011
  • Verri, Alessandra A. Spectrum of the Dirichlet Laplacian in sheared waveguides, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 1 | DOI:10.1007/s00033-020-01444-z
  • de Oliveira, César R.; Verri, Alessandra A. On the Neumann Laplacian in nonuniformly collapsing strips, Communications in Contemporary Mathematics, Volume 22 (2020) no. 04, p. 1950021 | DOI:10.1142/s0219199719500214
  • Gaudiello, Antonio; Gómez, Delfina; Pérez-Martínez, Maria-Eugenia Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure, Journal de Mathématiques Pures et Appliquées, Volume 134 (2020), p. 299 | DOI:10.1016/j.matpur.2019.06.005
  • Verri, Alessandra A. Dirichlet Laplacian in a thin twisted strip, International Journal of Mathematics, Volume 30 (2019) no. 02, p. 1950006 | DOI:10.1142/s0129167x1950006x
  • de Oliveira, César R.; Hartmann, Luiz; Verri, Alessandra A. Effective Hamiltonians in surfaces of thin quantum waveguides, Journal of Mathematical Physics, Volume 60 (2019) no. 2 | DOI:10.1063/1.5063804
  • Mamani, Carlos R.; Verri, Alessandra A. Absolute Continuity and Band Gaps of the Spectrum of the Dirichlet Laplacian in Periodic Waveguides, Bulletin of the Brazilian Mathematical Society, New Series, Volume 49 (2018) no. 3, p. 495 | DOI:10.1007/s00574-017-0065-5
  • Bakharev, Fedor L.; Exner, Pavel Geometrically Induced Spectral Effects in Tubes with a Mixed Dirichlet—Neumann Boundary, Reports on Mathematical Physics, Volume 81 (2018) no. 2, p. 213 | DOI:10.1016/s0034-4877(18)30038-7
  • Mamani, Carlos R.; Verri, Alessandra A. Influence of bounded states in the Neumann Laplacian in a thin waveguide, Rocky Mountain Journal of Mathematics, Volume 48 (2018) no. 6 | DOI:10.1216/rmj-2018-48-6-1993
  • de Oliveira, César R.; Verri, Alessandra A. Norm resolvent approximation of thin homogeneous tubes by heterogeneous ones, Communications in Contemporary Mathematics, Volume 19 (2017) no. 06, p. 1650060 | DOI:10.1142/s0219199716500607
  • Lampart, Jonas; Teufel, Stefan The adiabatic limit of Schrödinger operators on fibre bundles, Mathematische Annalen, Volume 367 (2017) no. 3-4, p. 1647 | DOI:10.1007/s00208-016-1421-2
  • DE OLIVEIRA, CÉSAR R.; VERRI, ALESSANDRA A. CONVERGENCE OF SOLUTIONS TO SOME ELLIPTIC EQUATIONS IN BOUNDED NEUMANN THIN DOMAINS, Journal of the Australian Mathematical Society, Volume 100 (2016) no. 2, p. 252 | DOI:10.1017/s1446788715000452
  • Vasil'ev, Valery A.; Chernov, Pavel S., 2015 Days on Diffraction (DD) (2015), p. 1 | DOI:10.1109/dd.2015.7354893
  • Haag, Stefan; Lampart, Jonas; Teufel, Stefan Generalised Quantum Waveguides, Annales Henri Poincaré, Volume 16 (2015) no. 11, p. 2535 | DOI:10.1007/s00023-014-0374-9
  • Kreisbeck, Carolin; Mascarenhas, Luísa Asymptotic spectral analysis in semiconductor nanowire heterostructures, Applicable Analysis, Volume 94 (2015) no. 6, p. 1153 | DOI:10.1080/00036811.2014.919052
  • de Oliveira, César R.; Verri, Alessandra A. Norm resolvent convergence of Dirichlet Laplacian in unbounded thin waveguides, Bulletin of the Brazilian Mathematical Society, New Series, Volume 46 (2015) no. 1, p. 139 | DOI:10.1007/s00574-015-0087-9
  • Briet, Philippe; Hammedi, Hiba; Krejčiřík, David Hardy Inequalities in Globally Twisted Waveguides, Letters in Mathematical Physics, Volume 105 (2015) no. 7, p. 939 | DOI:10.1007/s11005-015-0768-8
  • Krejčiřík, David; Raymond, Nicolas Magnetic Effects in Curved Quantum Waveguides, Annales Henri Poincaré, Volume 15 (2014) no. 10, p. 1993 | DOI:10.1007/s00023-013-0298-9
  • Felbacq, Didier; Rousseau, Emmanuel; Kling, Emmanuel Collective resonant modes of a metasurface, Journal of Nanophotonics, Volume 8 (2014) no. 1, p. 083987 | DOI:10.1117/1.jnp.8.083987
  • Lakhtakia, Akhlesh; Mackay, Tom G.; Suzuki, Motofumi; Razafindrakoto, Richard; Rousseau, Emmanuel; Felbacq, Didier; Kling, Emmanuel, Nanostructured Thin Films VII, Volume 9172 (2014), p. 917203 | DOI:10.1117/12.2060649
  • Stockhofe, J.; Schmelcher, P. Nonadiabatic couplings and gauge-theoretical structure of curved quantum waveguides, Physical Review A, Volume 89 (2014) no. 3 | DOI:10.1103/physreva.89.033630
  • Felbacq, Didier WITHDRAWN: Layer homogenization of a 2D periodic array of scatterers, Metamaterials (2013) | DOI:10.1016/j.metmat.2013.05.001
  • Krejčiřík, David; Šediváková, Helena The Effective Hamiltonian in Curved Quantum Waveguides and When It Does Not Work, Microlocal Methods in Mathematical Physics and Global Analysis (2013), p. 29 | DOI:10.1007/978-3-0348-0466-0_7
  • Felbacq, Didier Layer homogenization of a 2D periodic array of scatterers, Photonics and Nanostructures - Fundamentals and Applications, Volume 11 (2013) no. 4, p. 436 | DOI:10.1016/j.photonics.2013.07.003
  • Bouchitté, Guy; Mascarenhas, Luísa; Trabucho, Luís Thin waveguides with Robin boundary conditions, Journal of Mathematical Physics, Volume 53 (2012) no. 12 | DOI:10.1063/1.4768462
  • Borisov, Denis; Cardone, Giuseppe Planar waveguide with “twisted” boundary conditions: Small width, Journal of Mathematical Physics, Volume 53 (2012) no. 2 | DOI:10.1063/1.3681895
  • de Oliveira, César R.; Verri, Alessandra A. Mathematical predominance of Dirichlet condition for the one-dimensional Coulomb potential, Journal of Mathematical Physics, Volume 53 (2012) no. 5 | DOI:10.1063/1.4719976
  • de Oliveira, César R; Verri, Alessandra A Asymptotic spectrum for the Dirichlet Laplacian in thin deformed tubes with scaled geometry, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 43, p. 435201 | DOI:10.1088/1751-8113/45/43/435201
  • KREJČIŘÍK, DAVID; ŠEDIVÁKOVÁ, HELENA THE EFFECTIVE HAMILTONIAN IN CURVED QUANTUM WAVEGUIDES UNDER MILD REGULARITY ASSUMPTIONS, Reviews in Mathematical Physics, Volume 24 (2012) no. 07, p. 1250018 | DOI:10.1142/s0129055x12500183
  • de Oliveira, César R.; Verri, Alessandra A. On Norm Resolvent and Quadratic Form Convergences in Asymptotic Thin Spatial Waveguides, Spectral Analysis of Quantum Hamiltonians (2012), p. 253 | DOI:10.1007/978-3-0348-0414-1_12
  • Borisov, Denis; Cardone, Giuseppe Complete asymptotic expansions for eigenvalues of Dirichlet Laplacian in thin three-dimensional rods, ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 3, p. 887 | DOI:10.1051/cocv/2010028
  • Gaudiello, Antonio; Zappale, Elvira A Model of Joined Beams as Limit of a 2D Plate, Journal of Elasticity, Volume 103 (2011) no. 2, p. 205 | DOI:10.1007/s10659-010-9281-6
  • de Oliveira, César R.; Verri, Alessandra A. On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 1, p. 454 | DOI:10.1016/j.jmaa.2011.03.022
  • De Oliveira, César R. Quantum singular operator limits of thin Dirichlet tubes via Γ-convergence, Reports on Mathematical Physics, Volume 67 (2011) no. 1, p. 1 | DOI:10.1016/s0034-4877(11)00007-3
  • Wachsmuth, Jakob; Teufel, Stefan Constrained quantum systems as an adiabatic problem, Physical Review A, Volume 82 (2010) no. 2 | DOI:10.1103/physreva.82.022112
  • de Oliveira, César R. Is Dirichlet the physical boundary condition for the one-dimensional hydrogen atom?, Physics Letters A, Volume 374 (2010) no. 28, p. 2805 | DOI:10.1016/j.physleta.2010.04.074
  • Briet, Philippe; Kovařík, Hynek; Raikov, Georgi; Soccorsi, Eric Eigenvalue Asymptotics in a Twisted Waveguide, Communications in Partial Differential Equations, Volume 34 (2009) no. 8, p. 818 | DOI:10.1080/03605300902892337
  • Krejčiřík, David Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, Volume 15 (2009) no. 3, p. 555 | DOI:10.1051/cocv:2008035
  • Ekholm, T.; Kovařík, H.; Krejčiřík, D. A Hardy Inequality in Twisted Waveguides, Archive for Rational Mechanics and Analysis, Volume 188 (2008) no. 2, p. 245 | DOI:10.1007/s00205-007-0106-0
  • Ferreira, Rita; Mascarenhas, M. Luísa Waves in a thin and periodically oscillating medium, Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, p. 579 | DOI:10.1016/j.crma.2008.03.007

Cité par 40 documents. Sources : Crossref