We consider the Laplace operator in a thin tube of
Mots-clés : dimension reduction,
@article{COCV_2007__13_4_793_0, author = {Bouchitt\'e, Guy and Mascarenhas, M. Lu{\'\i}sa and Trabucho, Lu{\'\i}s}, title = {On the curvature and torsion effects in one dimensional waveguides}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {793--808}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007042}, mrnumber = {2351404}, zbl = {1139.49043}, language = {en}, url = {https://numdam.org/articles/10.1051/cocv:2007042/} }
TY - JOUR AU - Bouchitté, Guy AU - Mascarenhas, M. Luísa AU - Trabucho, Luís TI - On the curvature and torsion effects in one dimensional waveguides JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 793 EP - 808 VL - 13 IS - 4 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/cocv:2007042/ DO - 10.1051/cocv:2007042 LA - en ID - COCV_2007__13_4_793_0 ER -
%0 Journal Article %A Bouchitté, Guy %A Mascarenhas, M. Luísa %A Trabucho, Luís %T On the curvature and torsion effects in one dimensional waveguides %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 793-808 %V 13 %N 4 %I EDP-Sciences %U https://numdam.org/articles/10.1051/cocv:2007042/ %R 10.1051/cocv:2007042 %G en %F COCV_2007__13_4_793_0
Bouchitté, Guy; Mascarenhas, M. Luísa; Trabucho, Luís. On the curvature and torsion effects in one dimensional waveguides. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 793-808. doi : 10.1051/cocv:2007042. https://numdam.org/articles/10.1051/cocv:2007042/
[1] Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. | Zbl
and ,[2] Geometrically induced discrete specrtum in curved tubes. Differ. Geometry Appl. 23 (2005) 95-105. | Zbl
, , and ,[3] Fluids and periodic structures, Research in Applied Mathematics 38. Masson, Paris (1995). | MR | Zbl
, and ,
[4] An Introduction to
[5] Curvature-induced bounds states in quantum waveguides in two and tree dimensions. Rev. Math. Phys. 7 (1995) 73-102. | Zbl
and ,[6] Homogenization of Differential Operators and Integral Equations. Springer-Verlag, Berlin (1994). | MR
, and ,[7] On some spectral problems of mathematical physics. Partial differential equations and inverse problems., Contemp. Math. 362. Amer. Math. Soc., Providence, RI (2004) 241-276. | Zbl
,[8] Variational problems on multiply connected thin strips. II. Convergence of the Ginzburg-Landau functional. Arch. Ration. Mech. Anal. 160 (2001) 309-324. | Zbl
, ,[9] Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. | Zbl
,- Localization effects for Dirichlet problems in domains surrounded by thin stiff and heavy bands, Journal of Differential Equations, Volume 270 (2021), p. 1160 | DOI:10.1016/j.jde.2020.09.011
- Spectrum of the Dirichlet Laplacian in sheared waveguides, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 1 | DOI:10.1007/s00033-020-01444-z
- On the Neumann Laplacian in nonuniformly collapsing strips, Communications in Contemporary Mathematics, Volume 22 (2020) no. 04, p. 1950021 | DOI:10.1142/s0219199719500214
- Asymptotic analysis of the high frequencies for the Laplace operator in a thin T-like shaped structure, Journal de Mathématiques Pures et Appliquées, Volume 134 (2020), p. 299 | DOI:10.1016/j.matpur.2019.06.005
- Dirichlet Laplacian in a thin twisted strip, International Journal of Mathematics, Volume 30 (2019) no. 02, p. 1950006 | DOI:10.1142/s0129167x1950006x
- Effective Hamiltonians in surfaces of thin quantum waveguides, Journal of Mathematical Physics, Volume 60 (2019) no. 2 | DOI:10.1063/1.5063804
- Absolute Continuity and Band Gaps of the Spectrum of the Dirichlet Laplacian in Periodic Waveguides, Bulletin of the Brazilian Mathematical Society, New Series, Volume 49 (2018) no. 3, p. 495 | DOI:10.1007/s00574-017-0065-5
- Geometrically Induced Spectral Effects in Tubes with a Mixed Dirichlet—Neumann Boundary, Reports on Mathematical Physics, Volume 81 (2018) no. 2, p. 213 | DOI:10.1016/s0034-4877(18)30038-7
- Influence of bounded states in the Neumann Laplacian in a thin waveguide, Rocky Mountain Journal of Mathematics, Volume 48 (2018) no. 6 | DOI:10.1216/rmj-2018-48-6-1993
- Norm resolvent approximation of thin homogeneous tubes by heterogeneous ones, Communications in Contemporary Mathematics, Volume 19 (2017) no. 06, p. 1650060 | DOI:10.1142/s0219199716500607
- The adiabatic limit of Schrödinger operators on fibre bundles, Mathematische Annalen, Volume 367 (2017) no. 3-4, p. 1647 | DOI:10.1007/s00208-016-1421-2
- CONVERGENCE OF SOLUTIONS TO SOME ELLIPTIC EQUATIONS IN BOUNDED NEUMANN THIN DOMAINS, Journal of the Australian Mathematical Society, Volume 100 (2016) no. 2, p. 252 | DOI:10.1017/s1446788715000452
- , 2015 Days on Diffraction (DD) (2015), p. 1 | DOI:10.1109/dd.2015.7354893
- Generalised Quantum Waveguides, Annales Henri Poincaré, Volume 16 (2015) no. 11, p. 2535 | DOI:10.1007/s00023-014-0374-9
- Asymptotic spectral analysis in semiconductor nanowire heterostructures, Applicable Analysis, Volume 94 (2015) no. 6, p. 1153 | DOI:10.1080/00036811.2014.919052
- Norm resolvent convergence of Dirichlet Laplacian in unbounded thin waveguides, Bulletin of the Brazilian Mathematical Society, New Series, Volume 46 (2015) no. 1, p. 139 | DOI:10.1007/s00574-015-0087-9
- Hardy Inequalities in Globally Twisted Waveguides, Letters in Mathematical Physics, Volume 105 (2015) no. 7, p. 939 | DOI:10.1007/s11005-015-0768-8
- Magnetic Effects in Curved Quantum Waveguides, Annales Henri Poincaré, Volume 15 (2014) no. 10, p. 1993 | DOI:10.1007/s00023-013-0298-9
- Collective resonant modes of a metasurface, Journal of Nanophotonics, Volume 8 (2014) no. 1, p. 083987 | DOI:10.1117/1.jnp.8.083987
- , Nanostructured Thin Films VII, Volume 9172 (2014), p. 917203 | DOI:10.1117/12.2060649
- Nonadiabatic couplings and gauge-theoretical structure of curved quantum waveguides, Physical Review A, Volume 89 (2014) no. 3 | DOI:10.1103/physreva.89.033630
- WITHDRAWN: Layer homogenization of a 2D periodic array of scatterers, Metamaterials (2013) | DOI:10.1016/j.metmat.2013.05.001
- The Effective Hamiltonian in Curved Quantum Waveguides and When It Does Not Work, Microlocal Methods in Mathematical Physics and Global Analysis (2013), p. 29 | DOI:10.1007/978-3-0348-0466-0_7
- Layer homogenization of a 2D periodic array of scatterers, Photonics and Nanostructures - Fundamentals and Applications, Volume 11 (2013) no. 4, p. 436 | DOI:10.1016/j.photonics.2013.07.003
- Thin waveguides with Robin boundary conditions, Journal of Mathematical Physics, Volume 53 (2012) no. 12 | DOI:10.1063/1.4768462
- Planar waveguide with “twisted” boundary conditions: Small width, Journal of Mathematical Physics, Volume 53 (2012) no. 2 | DOI:10.1063/1.3681895
- Mathematical predominance of Dirichlet condition for the one-dimensional Coulomb potential, Journal of Mathematical Physics, Volume 53 (2012) no. 5 | DOI:10.1063/1.4719976
- Asymptotic spectrum for the Dirichlet Laplacian in thin deformed tubes with scaled geometry, Journal of Physics A: Mathematical and Theoretical, Volume 45 (2012) no. 43, p. 435201 | DOI:10.1088/1751-8113/45/43/435201
- THE EFFECTIVE HAMILTONIAN IN CURVED QUANTUM WAVEGUIDES UNDER MILD REGULARITY ASSUMPTIONS, Reviews in Mathematical Physics, Volume 24 (2012) no. 07, p. 1250018 | DOI:10.1142/s0129055x12500183
- On Norm Resolvent and Quadratic Form Convergences in Asymptotic Thin Spatial Waveguides, Spectral Analysis of Quantum Hamiltonians (2012), p. 253 | DOI:10.1007/978-3-0348-0414-1_12
- Complete asymptotic expansions for eigenvalues of Dirichlet Laplacian in thin three-dimensional rods, ESAIM: Control, Optimisation and Calculus of Variations, Volume 17 (2011) no. 3, p. 887 | DOI:10.1051/cocv/2010028
- A Model of Joined Beams as Limit of a 2D Plate, Journal of Elasticity, Volume 103 (2011) no. 2, p. 205 | DOI:10.1007/s10659-010-9281-6
- On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes, Journal of Mathematical Analysis and Applications, Volume 381 (2011) no. 1, p. 454 | DOI:10.1016/j.jmaa.2011.03.022
- Quantum singular operator limits of thin Dirichlet tubes via Γ-convergence, Reports on Mathematical Physics, Volume 67 (2011) no. 1, p. 1 | DOI:10.1016/s0034-4877(11)00007-3
- Constrained quantum systems as an adiabatic problem, Physical Review A, Volume 82 (2010) no. 2 | DOI:10.1103/physreva.82.022112
- Is Dirichlet the physical boundary condition for the one-dimensional hydrogen atom?, Physics Letters A, Volume 374 (2010) no. 28, p. 2805 | DOI:10.1016/j.physleta.2010.04.074
- Eigenvalue Asymptotics in a Twisted Waveguide, Communications in Partial Differential Equations, Volume 34 (2009) no. 8, p. 818 | DOI:10.1080/03605300902892337
- Spectrum of the Laplacian in a narrow curved strip with combined Dirichlet and Neumann boundary conditions, ESAIM: Control, Optimisation and Calculus of Variations, Volume 15 (2009) no. 3, p. 555 | DOI:10.1051/cocv:2008035
- A Hardy Inequality in Twisted Waveguides, Archive for Rational Mechanics and Analysis, Volume 188 (2008) no. 2, p. 245 | DOI:10.1007/s00205-007-0106-0
- Waves in a thin and periodically oscillating medium, Comptes Rendus. Mathématique, Volume 346 (2008) no. 9-10, p. 579 | DOI:10.1016/j.crma.2008.03.007
Cité par 40 documents. Sources : Crossref