Nous démontrons un théorème de Poincaré-Dulac pour des suites de contractions holomorphes
De telles suites de contractions holomorphes apparaissent naturellement comme branches inverses d’endomorphismes de
We establish a Poincaré-Dulac theorem for sequences
Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of
Keywords: Normalization, Poincaré-Dulac theorem, Lyapounov exponents
Mot clés : Normalisation, théorème de Poincaré-Dulac, exposants de Lyapounov
@article{AIF_2008__58_6_2137_0, author = {Berteloot, Fran\c{c}ois and Dupont, Christophe and Molino, Laura}, title = {Normalization of bundle holomorphic contractions and applications to dynamics}, journal = {Annales de l'Institut Fourier}, pages = {2137--2168}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2409}, zbl = {1151.37038}, mrnumber = {2473632}, language = {en}, url = {https://numdam.org/articles/10.5802/aif.2409/} }
TY - JOUR AU - Berteloot, François AU - Dupont, Christophe AU - Molino, Laura TI - Normalization of bundle holomorphic contractions and applications to dynamics JO - Annales de l'Institut Fourier PY - 2008 SP - 2137 EP - 2168 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://numdam.org/articles/10.5802/aif.2409/ DO - 10.5802/aif.2409 LA - en ID - AIF_2008__58_6_2137_0 ER -
%0 Journal Article %A Berteloot, François %A Dupont, Christophe %A Molino, Laura %T Normalization of bundle holomorphic contractions and applications to dynamics %J Annales de l'Institut Fourier %D 2008 %P 2137-2168 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U https://numdam.org/articles/10.5802/aif.2409/ %R 10.5802/aif.2409 %G en %F AIF_2008__58_6_2137_0
Berteloot, François; Dupont, Christophe; Molino, Laura. Normalization of bundle holomorphic contractions and applications to dynamics. Annales de l'Institut Fourier, Tome 58 (2008) no. 6, pp. 2137-2168. doi : 10.5802/aif.2409. https://numdam.org/articles/10.5802/aif.2409/
[1] Distribution of periodic points of polynomial diffeomorphisms of
[2] Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6), Volume 15 (2006) no. 3, pp. 427-483 | DOI | Numdam | Zbl
[3] Bifurcation currents in holomorphic dynamics in
[4] Une caractérisation des endomorphismes de Lattès par leur mesure de Green, Comment. Math. Helv., Volume 80 (2005) no. 2, pp. 433-454 | DOI | MR | Zbl
[5] Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de
[6] Dynamique des applications d’allure polynomiale, J. Math. Pures Appl. (9), Volume 82 (2003) no. 4, pp. 367-423 | Zbl
[7] Stable manifolds of holomorphic hyperbolic maps, Internat. J. Math., Volume 15 (2004) no. 8, pp. 749-758 | DOI | MR | Zbl
[8] Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations, Math. Res. Lett., Volume 5 (1998) no. 1-2, pp. 149-163 | MR | Zbl
[9] Stable manifolds of holomorphic diffeomorphisms, Invent. Math., Volume 149 (2002) no. 2, pp. 409-430 | DOI | MR | Zbl
[10] Introduction to the modern theory of dynamical systems, Cambridge Univ. Press, 1995 | MR | Zbl
[11] Nonstationary normal forms and rigidity of group actions, Electron. Res. Announc. Amer. Math. Soc., Volume 2 (1996) no. 3, pp. 124-133 | DOI | MR | Zbl
[12] Perturbed basins of attraction, Math. Ann., Volume 337 (2007) no. 1, pp. 1-13 | DOI | MR | Zbl
[13] Holomorphic maps from
[14] Dynamique des applications rationnelles de
[15] Local contractions and a theorem by Poincaré, Am. J. Math., Volume 79 (1957), pp. 809-824 | DOI | MR | Zbl
[16] Equidistribution and generalized Mahler measure, 2005 (arXiv: math.NT/0510404)
Cité par Sources :