[Un théorème de Paley-Wiener spectral pour le groupe d’Heisenberg et un théorème de support pour les moyennes shériques tordues sur
Nous prouvons un théorème de Paley-Wiener spectral pour le groupe d’Heisenberg en utilisant un théorème du support pour les moyennes sphériques tordues sur
We prove a spectral Paley-Wiener theorem for the Heisenberg group by means of a support theorem for the twisted spherical means on
Mots-clés : Spectral Paley-Wiener theorem, twisted spherical means, special Hermite operator, Laguerre functions, support theorem, spherical harmonics
@article{AIF_2006__56_2_459_0, author = {Narayanan, E.~K. and Thangavelu, S.}, title = {A spectral {Paley-Wiener} theorem for the {Heisenberg} group and a support theorem for the twisted spherical means on $\mathbb{C}^n$}, journal = {Annales de l'Institut Fourier}, pages = {459--473}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {2}, year = {2006}, doi = {10.5802/aif.2189}, zbl = {1089.43006}, mrnumber = {2226023}, language = {en}, url = {https://numdam.org/articles/10.5802/aif.2189/} }
TY - JOUR AU - Narayanan, E. K. AU - Thangavelu, S. TI - A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$ JO - Annales de l'Institut Fourier PY - 2006 SP - 459 EP - 473 VL - 56 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://numdam.org/articles/10.5802/aif.2189/ DO - 10.5802/aif.2189 LA - en ID - AIF_2006__56_2_459_0 ER -
%0 Journal Article %A Narayanan, E. K. %A Thangavelu, S. %T A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$ %J Annales de l'Institut Fourier %D 2006 %P 459-473 %V 56 %N 2 %I Association des Annales de l’institut Fourier %U https://numdam.org/articles/10.5802/aif.2189/ %R 10.5802/aif.2189 %G en %F AIF_2006__56_2_459_0
Narayanan, E. K.; Thangavelu, S. A spectral Paley-Wiener theorem for the Heisenberg group and a support theorem for the twisted spherical means on $\mathbb{C}^n$. Annales de l'Institut Fourier, Tome 56 (2006) no. 2, pp. 459-473. doi : 10.5802/aif.2189. https://numdam.org/articles/10.5802/aif.2189/
[1] Injectivity sets for the spherical means on the Heisenberg group, J. Fourier Anal. Appl., Volume 5 (1999) no. 4, pp. 363-372 | DOI | MR | Zbl
[2] A spectral Paley-Wiener theorem, Monatsh. Math., Volume 116 (1993) no. 1, pp. 1-11 | DOI | MR | Zbl
[3] Generalized spectral projections on symmetric spaces of non compact type: Paley-Wiener theorems, J. Funct. Anal., Volume 135 (1996) no. 1, pp. 206-232 | DOI | MR | Zbl
[4] Spherical means in annular regions, Comm. Pure Appl. Math., Volume 46 (1993) no. 3, pp. 441-451 | DOI | MR | Zbl
[5] Groups and Geometric Analysis, Academic press, New York, 1984 | MR | Zbl
[6] Injectivity sets for the spherical means on the Heisenberg group, J. Math. Anal. Appl., Volume 263 (2001) no. 2, pp. 565-579 | DOI | MR | Zbl
[7] Asymptotics and special functions, Academic press, New York, 1974 (Computer Science and Applied Mathematics) | MR | Zbl
[8] Function theory in the unit ball of
[9] On the injectivity of twisted spherical means on
[10] Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal., Volume 87 (1989), pp. 51-148 | DOI | MR | Zbl
[11] Orthogonal polynomials, Colloq. Pub., 23, Amer. Math. Soc., Providence, R. I., 1967
[12] Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl
[13] Harmonic analysis on the Heisenberg group, Progress in Mathematics, 159, Birkhäuser Boston, Boston, MA, 1998 | MR | Zbl
[14] An introduction to the uncertainty principle, Progress in Mathematics, 217, Birkhäuser Boston, Boston, MA, 2004 | MR | Zbl
Cité par Sources :