Les transformations de contact quantifiées sont des opérateurs unitaires de Toeplitz de la forme
Quantized contact transformations are Toeplitz operators over a contact manifold
@article{AIF_1997__47_1_305_0, author = {Zelditch, Steven}, title = {Index and dynamics of quantized contact transformations}, journal = {Annales de l'Institut Fourier}, pages = {305--363}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {1}, year = {1997}, doi = {10.5802/aif.1568}, mrnumber = {99a:58082}, zbl = {0865.47018}, language = {en}, url = {https://numdam.org/articles/10.5802/aif.1568/} }
TY - JOUR AU - Zelditch, Steven TI - Index and dynamics of quantized contact transformations JO - Annales de l'Institut Fourier PY - 1997 SP - 305 EP - 363 VL - 47 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://numdam.org/articles/10.5802/aif.1568/ DO - 10.5802/aif.1568 LA - en ID - AIF_1997__47_1_305_0 ER -
%0 Journal Article %A Zelditch, Steven %T Index and dynamics of quantized contact transformations %J Annales de l'Institut Fourier %D 1997 %P 305-363 %V 47 %N 1 %I Association des Annales de l’institut Fourier %U https://numdam.org/articles/10.5802/aif.1568/ %R 10.5802/aif.1568 %G en %F AIF_1997__47_1_305_0
Zelditch, Steven. Index and dynamics of quantized contact transformations. Annales de l'Institut Fourier, Tome 47 (1997) no. 1, pp. 305-363. doi : 10.5802/aif.1568. https://numdam.org/articles/10.5802/aif.1568/
[At] The Geometry and Physics of Knots, Lezioni Lincee, Cambridge Univ. Press, 1990. | MR | Zbl
,[AT] Is computing with the finite Fourier transform pure or applied mathematics, Bull. AMS, 1 (1979), 847-897. | MR | Zbl
and ,[A] Lecture Notes on Nil-theta Functions, CBMS series no. 34, AMS Publications (1977). | MR | Zbl
,[AdPW] Geometric quantization of the Chern-Simons gauge theory, J.D.G., 33 (1991), 787-902. | MR | Zbl
, , and ,[Bai] Classical theory of θ-functions, in AMS Proc.Symp.Pure. Math. IX, AMS (1966), 306-311. | MR | Zbl
,[B] Deterministic Chaos in Infinite Quantum Systems, Trieste Notes in Physics, Springer-Verlag (1993).
,[BNS] A non-commutative version of the Arnold cat map, Lett. Math. Phys., 21 (1991), 157-172. | MR | Zbl
, , and ,[BPU] Legendrian distributions with applications to relative Poincaré series, Invent. Math., 122 (1995), 359-402. | EuDML | MR | Zbl
, , ,[B] Toeplitz operators—an asymptotic quantization of symplectic cones, in : Stochastic Processes and Their Applications, S. Albeverio (Ed.), Kluwer Acad. Pub. Netherlands, 1990. | MR | Zbl
,[BG] The Spectral Theory of Toeplitz Operators, Ann. Math. Studies 99, Princeton U. Press (1981). | MR | Zbl
and ,[BS] Sur la singularité des noyaux de Bergmann et de Szegö, Astérisque 34-35, (1976), 123-164. | Numdam | Zbl
and ,[BdB] Equipartition of the eigenfunctions of quantized ergodic maps on the torus, to appear in Comm.Math.Phys. | Zbl
and ,[BR] Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlay, 1979. | MR | Zbl
and ,[C] Quantum mechanical commutation relations and theta functions, in Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. AMS (1966). | MR | Zbl
,[CV] Ergodicité et functions propres du Laplacian, Comm. Math. Phys., 102 (1985), 497-502. | MR | Zbl
,[D] Coherent states and projective representations of the linear canonical transformations, J. Math. Phys., 21 (1980), 1377-1389. | MR | Zbl
,[dEGI] Stochastic properties of the quantum Arnold cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.
, , and ,[Do] C*-Algebra Extensions and K-Homology, Ann. Math. Studies no. 95, Princeton Univ. Press, Princeton, 1980. | MR | Zbl
,[F] Harmonic Analysis in Phase Space, Ann. Math. Studies, no. 122, Princeton Univ. Press, 1989. | MR | Zbl
,[FS] Estimates for the ∂b complex and analysis on the Heisenberg group, Comm. P.A.M., 27 (1974), 429-522. | MR | Zbl
and ,[G1] Residue traces for certain algebras of Fourier Integral operators, J. Fun. Anal., 115 (1993), 381-417. | MR | Zbl
,[G2] A non-elementary proof of quadratic reciprocity (unpublished manuscript).
,[HB] Quantization of linear maps on a torus, Physica D1 (1980), 267.
and ,[H] In : Chaos and Quantum Physics, Les Houches 1989 (ed. by M.J. Giannoni, A. Voros and J. Zinn-Justin), Amsterdam, North Holland, 1991.
,[Herm] Sur quelques formules relatives a la transformation des fonctions elliptiques, Journal de Liouville, III (1858), 26.
,[JP] On a model of quantum friction III : Ergodic properties of the spin-boson system, Comm. Math. Phys. 178 (1996), 627-651. | MR | Zbl
and ,[K] Infinite Dimensional Lie Algebras, 3rd ed. Cambridge : Cambridge Univ. Press, 1990. | Zbl
,[KP] Infinite dimensional Lie algebras, theta functions and modular forms, Adv in Math., 53 (1984), 125-264. | MR | Zbl
and ,[Ke] The cat maps : quantum mechanics and classical motion, Nonlinearity, 4 (1991), 309-341. | MR | Zbl
,[Kloo] The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups. I, Ann. Math., 47 (1946), 317. | Zbl
,[M] Tata Lectures on Theta III, Progress in Math. 97, Birkhauser, Boston (1991). | MR | Zbl
,[NT1] Transitivity and ergodicity of quantum systems, J.Stat.Phys., 52 (1988), 1097-1112. | MR | Zbl
and ,[NT2] Mixing properties of quantum systems, J.Stat.Phys., 57 (1989), 811-825. | MR | Zbl
and ,[R] Statistical Mechanics, Benjamin, 1969.
,[Sn] Ergodic properties of eigenfunctions, Usp. Math. Nauk., 29 (1974), 181-182.
,[S] Harmonic Analysis, Princeton: Princeton Univ. Press, 1993.
,[Su] Quantum ergodicity, preprint 1994. | Zbl
,[Th] A Course in Mathematical Physics, vol. 4 : Quantum Mechanics of Large Systems, Springer-Verlag, New York, 1983. | Zbl
,[UZ] Spectral statistics on Zoll surfaces, Comm. Math. Phys. 154 (1993), 313-346. | MR | Zbl
and ,[W] An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer-Verlag, NY (1982). | MR | Zbl
,[Wei] Fourier Integral Operators, quantization, and the spectrum of a Riemannian manifold, Colloques Internationaux C.N.R.S. 237, Géométrie Symplectique et Physique (1976).
,[We] Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one, Comm.Math.Phys., 137 (1991), 175-190. | MR | Zbl
,[Z1] Quantum ergodicity of C*-dynamical systems, (Comm.Math.Phys., 177 (1996), 507-528. | MR | Zbl
,[Z2] Quantum Mixing, J. Fun. Anal., 140 (1996), 68-86. | MR | Zbl
,[Z3] Quantum transition amplitudes for ergodic and for completely integrable systems, J. Fun. Anal., 94 (1990), 415-436. | MR | Zbl
,- Poisson and Szegö kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz), Bollettino dell'Unione Matematica Italiana, Volume 17 (2024) no. 4, p. 767 | DOI:10.1007/s40574-024-00412-z
- Micro-local analysis of contact Anosov flows and band structure of the Ruelle spectrum, Communications of the American Mathematical Society, Volume 4 (2024) no. 15, p. 641 | DOI:10.1090/cams/40
- Pointwise Weyl Law for Graphs from Quantized Interval Maps, Annales Henri Poincaré, Volume 24 (2023) no. 8, p. 2833 | DOI:10.1007/s00023-023-01276-3
- Existence for singular critical exponential (𝑝, 𝑄) equations in the Heisenberg group, Advances in Calculus of Variations, Volume 15 (2022) no. 3, p. 601 | DOI:10.1515/acv-2020-0028
- Around quantum ergodicity, Annales mathématiques du Québec, Volume 46 (2022) no. 1, p. 11 | DOI:10.1007/s40316-021-00165-7
- Geometric quantization of symplectic maps and Witten's asymptotic conjecture, Advances in Mathematics, Volume 387 (2021), p. 107840 | DOI:10.1016/j.aim.2021.107840
- Interfaces in Spectral Asymptotics and Nodal Sets, Frontiers in Analysis and Probability (2020), p. 383 | DOI:10.1007/978-3-030-56409-4_10
- The Distribution of Phase Shifts for Semiclassical Potentials with Polynomial Decay, International Mathematics Research Notices, Volume 2020 (2020) no. 19, p. 6294 | DOI:10.1093/imrn/rny180
- Geometric quantization of Hamiltonian flows and the Gutzwiller trace formula, Letters in Mathematical Physics, Volume 110 (2020) no. 7, p. 1585 | DOI:10.1007/s11005-020-01267-z
- Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, p. 911 | DOI:10.1007/s00209-020-02462-3
- Existence for (p,q) critical systems in the Heisenberg group, Advances in Nonlinear Analysis, Volume 9 (2019) no. 1, p. 895 | DOI:10.1515/anona-2020-0032
- Equidistribution of phase shifts in obstacle scattering, Communications in Partial Differential Equations, Volume 44 (2019) no. 1, p. 1 | DOI:10.1080/03605302.2018.1499778
- Central limit theorem for spectral partial Bergman kernels, Geometry Topology, Volume 23 (2019) no. 4, p. 1961 | DOI:10.2140/gt.2019.23.1961
- Pointwise Weyl Law for Partial Bergman Kernels, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 589 | DOI:10.1007/978-3-030-01588-6_13
- Log-Scale Equidistribution of Zeros of Quantum Ergodic Eigensections, Annales Henri Poincaré, Volume 19 (2018) no. 12, p. 3783 | DOI:10.1007/s00023-018-0735-x
- Quantum Ergodic Sequences and Equilibrium Measures, Constructive Approximation, Volume 47 (2018) no. 1, p. 89 | DOI:10.1007/s00365-017-9397-z
- Local Scaling Asymptotics for the Gutzwiller Trace Formula in Berezin–Toeplitz Quantization, The Journal of Geometric Analysis, Volume 28 (2018) no. 2, p. 1548 | DOI:10.1007/s12220-017-9878-0
- Asymptotic expansions of the Witten–Reshetikhin–Turaev invariants of mapping tori I, Transactions of the American Mathematical Society, Volume 372 (2018) no. 8, p. 5713 | DOI:10.1090/tran/7740
- A Gutzwiller trace formula for large hermitian matrices, Reviews in Mathematical Physics, Volume 29 (2017) no. 08, p. 1750027 | DOI:10.1142/s0129055x17500271
- Fourier integral operators and the index of symplectomorphisms on manifolds with boundary, Journal of Functional Analysis, Volume 269 (2015) no. 11, p. 3528 | DOI:10.1016/j.jfa.2015.06.001
- Equidistribution of phase shifts in semiclassical potential scattering, Journal of the London Mathematical Society, Volume 91 (2015) no. 1, p. 159 | DOI:10.1112/jlms/jdu068
- The Poisson transform on a compact real analytic Riemannian manifold, Monatshefte für Mathematik, Volume 178 (2015) no. 2, p. 299 | DOI:10.1007/s00605-015-0798-4
- Lower-order asymptotics for Szegö and Toeplitz kernels under Hamiltonian circle actions, Recent Advances in Algebraic Geometry (2015), p. 321 | DOI:10.1017/cbo9781107416000.018
- Singular Bohr–Sommerfeld conditions for 1D Toeplitz operators: hyperbolic case, Analysis PDE, Volume 7 (2014) no. 7, p. 1595 | DOI:10.2140/apde.2014.7.1595
- Approximation and Equidistribution of Phase Shifts: Spherical Symmetry, Communications in Mathematical Physics, Volume 326 (2014) no. 1, p. 209 | DOI:10.1007/s00220-013-1841-8
- Local scaling asymptotics in phase space and time in Berezin–Toeplitz quantization, International Journal of Mathematics, Volume 25 (2014) no. 06, p. 1450060 | DOI:10.1142/s0129167x14500608
- Anatomy of Quantum Chaotic Eigenstates, Chaos, Volume 66 (2013), p. 193 | DOI:10.1007/978-3-0348-0697-8_6
- SCALING ASYMPTOTICS FOR QUANTIZED HAMILTONIAN FLOWS, International Journal of Mathematics, Volume 23 (2012) no. 10, p. 1250102 | DOI:10.1142/s0129167x12501029
- Local trace formulae and scaling asymptotics for general quantized Hamiltonian flows, Journal of Mathematical Physics, Volume 53 (2012) no. 2 | DOI:10.1063/1.3679660
- Large Newforms of the Quantized Cat Map Revisited, Annales Henri Poincaré, Volume 11 (2010) no. 7, p. 1285 | DOI:10.1007/s00023-010-0057-0
- Local Asymptotics for Slowly Shrinking Spectral Bands of a Berezin-Toeplitz Operator, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq109
- A Lefschetz fixed point formula for symplectomorphisms, Journal of Geometry and Physics, Volume 60 (2010) no. 12, p. 1890 | DOI:10.1016/j.geomphys.2010.07.002
- Hecke Eigenfunctions of Quantized Cat Maps Modulo Prime Powers, Annales Henri Poincaré, Volume 10 (2009) no. 6 | DOI:10.1007/s00023-009-0011-1
- Large Supremum Norms and Small Shannon Entropy for Hecke Eigenfunctions of Quantized Cat Maps, Communications in Mathematical Physics, Volume 286 (2009) no. 3, p. 1051 | DOI:10.1007/s00220-008-0627-x
- Szegö kernels, Toeplitz operators, and equivariant fixed point formulae, Journal d'Analyse Mathématique, Volume 106 (2008) no. 1, p. 209 | DOI:10.1007/s11854-008-0048-y
- The Manifold of Compatible Almost Complex Structures and Geometric Quantization, Communications in Mathematical Physics, Volume 274 (2007) no. 2, p. 357 | DOI:10.1007/s00220-007-0280-9
- Quantum maps and automorphisms, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 623 | DOI:10.1007/0-8176-4419-9_22
- THE ARITHMETIC THEORY OF QUANTUM MAPS, Equidistribution in Number Theory, An Introduction, Volume 237 (2006), p. 331 | DOI:10.1007/978-1-4020-5404-4_15
- Weyl's law and quantum ergodicity for maps with divided phase space (with an appendix Converse quantum ergodicity), Nonlinearity, Volume 18 (2005) no. 1, p. 277 | DOI:10.1088/0951-7715/18/1/015
- A semi-classical study of the Casati–Prosen triangle map, Nonlinearity, Volume 18 (2005) no. 3, p. 1073 | DOI:10.1088/0951-7715/18/3/009
- Harmonic analysis on finite Heisenberg groups, European Journal of Combinatorics, Volume 25 (2004) no. 3, p. 327 | DOI:10.1016/j.ejc.2003.10.003
- Dissipation time and decay of correlations, Nonlinearity, Volume 17 (2004) no. 4, p. 1481 | DOI:10.1088/0951-7715/17/4/018
- Quasimodes and Bohr-Sommerfeld Conditions for the Toeplitz Operators, Communications in Partial Differential Equations, Volume 28 (2003) no. 9-10, p. 1527 | DOI:10.1081/pde-120024521
- Controlling strong scarring for quantized ergodic toral automorphisms, Duke Mathematical Journal, Volume 117 (2003) no. 3 | DOI:10.1215/s0012-7094-03-11736-6
- Eigenvalue spacings for quantized cat maps, Journal of Physics A: Mathematical and General, Volume 36 (2003) no. 12, p. 3487 | DOI:10.1088/0305-4470/36/12/336
- Spectral properties of noisy classical and quantum propagators, Nonlinearity, Volume 16 (2003) no. 5, p. 1685 | DOI:10.1088/0951-7715/16/5/309
- Mathematical Aspects of Quantum Maps, The Mathematical Aspects of Quantum Maps, Volume 618 (2003), p. 49 | DOI:10.1007/3-540-37045-5_3
- Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems, The Mathematical Aspects of Quantum Maps, Volume 618 (2003), p. 91 | DOI:10.1007/3-540-37045-5_4
- Det-Det correlations for quantum maps: Dual pair and saddle-point analyses, Journal of Mathematical Physics, Volume 43 (2002) no. 5, p. 2214 | DOI:10.1063/1.1462417
- On the multiplicativity of quantum cat maps, Nonlinearity, Volume 15 (2002) no. 3, p. 905 | DOI:10.1088/0951-7715/15/3/323
- On Quantum Unique Ergodicity for Linear Maps of the Torus, European Congress of Mathematics (2001), p. 429 | DOI:10.1007/978-3-0348-8266-8_37
- Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Mathematical Journal, Volume 103 (2000) no. 1 | DOI:10.1215/s0012-7094-00-10314-6
- Pseudo-symmetries of Anosov maps and spectral statistics, Nonlinearity, Volume 13 (2000) no. 3, p. 747 | DOI:10.1088/0951-7715/13/3/313
- Equidistribution des valeurs propres et ergodicité semi-classique de symplectomorphismes du tore quantifiés, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 326 (1998) no. 8, p. 1021 | DOI:10.1016/s0764-4442(98)80134-1
Cité par 54 documents. Sources : Crossref