Index and dynamics of quantized contact transformations
Annales de l'Institut Fourier, Tome 47 (1997) no. 1, pp. 305-363.

Les transformations de contact quantifiées sont des opérateurs unitaires de Toeplitz de la forme Uχ=ΠAχΠ sur une variété (X,α) de contact. Ici, Π:H2(X)L2(X) est un projecteur de Szegö, χ est une transformation de contact, et A est un opérateur pseudodifférentiel sur X. On peut quantifier une transformation symplectique χo sur une variété symplectique (M,ω) de cette façon lorsque χo se relève en une transformation de contact χ sur le fibré “pré-quantique” en cercles XM. On montre que les automorphismes symplectiques χo d’un tore (M,dxidξi) sont de ce type : le fibré X est alors le quotient du groupe de Heisenberg par son réseau entier δ, le projecteur Π est le noyau de Szegö, et, à une constante près, ΠχΠ définit une des lois de transformation de Hermite–Jacobi sur les fonctions thêta. Il en résulte que les applications quantiques du chat (telles qu’elles sont connues dans la littérature physique) ne sont autres que l’action métaplectique du groupe de thêta sur les fonctions thêta. Il résulte aussi que les indices de ces applications symplectiques sont nuls. On donne par ailleurs des résultats généraux sur l’ergodicité quantique des transformations de contact quantifiées, c’est-à-dire, sur les propriétés asymptotiques des valeurs et fonctions propres de ΠAχΠ.

Quantized contact transformations are Toeplitz operators over a contact manifold (X,α) of the form Uχ=ΠAχΠ, where Π:H2(X)L2(X) is a Szegö projector, where χ is a contact transformation and where A is a pseudodifferential operator over X. They provide a flexible alternative to the Kähler quantization of symplectic maps, and encompass many of the examples in the physics literature, e.g. quantized cat maps and kicked rotors. The index problem is to determine ind(Uχ) when the principal symbol is unitary, or equivalently to determine whether A can be chosen so that Uχ is unitary. We show that the answer is yes in the case of quantized symplectic torus automorphisms g—by showing that Ug duplicates the classical transformation laws on theta functions. Using the Cauchy-Szegö kernel on the Heisenberg group, we calculate the traces on theta functions of each degree N. We also study the quantum dynamics generated by a general q.c.t. Uχ, i.e. the quasi-classical asymptotics of the eigenvalues and eigenfunctions under various ergodicity and mixing hypotheses on χ. Our principal results are proofs of equidistribution of eigenfunctions φNj and weak mixing properties of matrix elements (BφNi,φNj) for quantizations of mixing symplectic maps.

@article{AIF_1997__47_1_305_0,
     author = {Zelditch, Steven},
     title = {Index and dynamics of quantized contact transformations},
     journal = {Annales de l'Institut Fourier},
     pages = {305--363},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {47},
     number = {1},
     year = {1997},
     doi = {10.5802/aif.1568},
     mrnumber = {99a:58082},
     zbl = {0865.47018},
     language = {en},
     url = {https://numdam.org/articles/10.5802/aif.1568/}
}
TY  - JOUR
AU  - Zelditch, Steven
TI  - Index and dynamics of quantized contact transformations
JO  - Annales de l'Institut Fourier
PY  - 1997
SP  - 305
EP  - 363
VL  - 47
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://numdam.org/articles/10.5802/aif.1568/
DO  - 10.5802/aif.1568
LA  - en
ID  - AIF_1997__47_1_305_0
ER  - 
%0 Journal Article
%A Zelditch, Steven
%T Index and dynamics of quantized contact transformations
%J Annales de l'Institut Fourier
%D 1997
%P 305-363
%V 47
%N 1
%I Association des Annales de l’institut Fourier
%U https://numdam.org/articles/10.5802/aif.1568/
%R 10.5802/aif.1568
%G en
%F AIF_1997__47_1_305_0
Zelditch, Steven. Index and dynamics of quantized contact transformations. Annales de l'Institut Fourier, Tome 47 (1997) no. 1, pp. 305-363. doi : 10.5802/aif.1568. https://numdam.org/articles/10.5802/aif.1568/

[At] M. Atiyah, The Geometry and Physics of Knots, Lezioni Lincee, Cambridge Univ. Press, 1990. | MR | Zbl

[AT] L. Auslander and R. Tolimieri, Is computing with the finite Fourier transform pure or applied mathematics, Bull. AMS, 1 (1979), 847-897. | MR | Zbl

[A] L. Auslander, Lecture Notes on Nil-theta Functions, CBMS series no. 34, AMS Publications (1977). | MR | Zbl

[AdPW] S. Axelrod, S. Della Pietra, and E. Witten, Geometric quantization of the Chern-Simons gauge theory, J.D.G., 33 (1991), 787-902. | MR | Zbl

[Bai] W. Baily, Classical theory of θ-functions, in AMS Proc.Symp.Pure. Math. IX, AMS (1966), 306-311. | MR | Zbl

[B] F. Benatti, Deterministic Chaos in Infinite Quantum Systems, Trieste Notes in Physics, Springer-Verlag (1993).

[BNS] F. Benatti, H. Narnhofer, and G.L. Sewell, A non-commutative version of the Arnold cat map, Lett. Math. Phys., 21 (1991), 157-172. | MR | Zbl

[BPU] D. Borthwick, T. Paul, A. Uribe, Legendrian distributions with applications to relative Poincaré series, Invent. Math., 122 (1995), 359-402. | EuDML | MR | Zbl

[B] L. Boutet De Monvel, Toeplitz operators—an asymptotic quantization of symplectic cones, in : Stochastic Processes and Their Applications, S. Albeverio (Ed.), Kluwer Acad. Pub. Netherlands, 1990. | MR | Zbl

[BG] L. Boutet De Monvel and V. Guillemin, The Spectral Theory of Toeplitz Operators, Ann. Math. Studies 99, Princeton U. Press (1981). | MR | Zbl

[BS] L. Boutet De Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergmann et de Szegö, Astérisque 34-35, (1976), 123-164. | Numdam | Zbl

[BdB] A. Bouzouina and S. De Bièvre, Equipartition of the eigenfunctions of quantized ergodic maps on the torus, to appear in Comm.Math.Phys. | Zbl

[BR] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlay, 1979. | MR | Zbl

[C] P. Cartier, Quantum mechanical commutation relations and theta functions, in Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. AMS (1966). | MR | Zbl

[CV] Y. Colin De Verdière, Ergodicité et functions propres du Laplacian, Comm. Math. Phys., 102 (1985), 497-502. | MR | Zbl

[D] I. Daubechies, Coherent states and projective representations of the linear canonical transformations, J. Math. Phys., 21 (1980), 1377-1389. | MR | Zbl

[dEGI] M. D'Egli Esposti, S. Graffi, and S. Isola, Stochastic properties of the quantum Arnold cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.

[Do] R.G. Douglas, C*-Algebra Extensions and K-Homology, Ann. Math. Studies no. 95, Princeton Univ. Press, Princeton, 1980. | MR | Zbl

[F] G. Folland, Harmonic Analysis in Phase Space, Ann. Math. Studies, no. 122, Princeton Univ. Press, 1989. | MR | Zbl

[FS] G. Folland and E. Stein, Estimates for the ∂b complex and analysis on the Heisenberg group, Comm. P.A.M., 27 (1974), 429-522. | MR | Zbl

[G1] V. Guillemin, Residue traces for certain algebras of Fourier Integral operators, J. Fun. Anal., 115 (1993), 381-417. | MR | Zbl

[G2] V. Guillemin, A non-elementary proof of quadratic reciprocity (unpublished manuscript).

[HB] J.H. Hannay and M.V. Berry, Quantization of linear maps on a torus, Physica D1 (1980), 267.

[H] E.J. Heller, In : Chaos and Quantum Physics, Les Houches 1989 (ed. by M.J. Giannoni, A. Voros and J. Zinn-Justin), Amsterdam, North Holland, 1991.

[Herm] C. Hermite, Sur quelques formules relatives a la transformation des fonctions elliptiques, Journal de Liouville, III (1858), 26.

[JP] V. Jaksic and C.A. Pillet, On a model of quantum friction III : Ergodic properties of the spin-boson system, Comm. Math. Phys. 178 (1996), 627-651. | MR | Zbl

[K] V. Kac, Infinite Dimensional Lie Algebras, 3rd ed. Cambridge : Cambridge Univ. Press, 1990. | Zbl

[KP] V. Kac and D.H. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv in Math., 53 (1984), 125-264. | MR | Zbl

[Ke] J. Keating, The cat maps : quantum mechanics and classical motion, Nonlinearity, 4 (1991), 309-341. | MR | Zbl

[Kloo] H.D. Kloosterman, The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups. I, Ann. Math., 47 (1946), 317. | Zbl

[M] D. Mumford, Tata Lectures on Theta III, Progress in Math. 97, Birkhauser, Boston (1991). | MR | Zbl

[NT1] H. Narnhofer and W. Thirring, Transitivity and ergodicity of quantum systems, J.Stat.Phys., 52 (1988), 1097-1112. | MR | Zbl

[NT2] H. Narnhofer and W. Thirring, Mixing properties of quantum systems, J.Stat.Phys., 57 (1989), 811-825. | MR | Zbl

[R] D. Ruelle, Statistical Mechanics, Benjamin, 1969.

[Sn] A.I. Snirelman, Ergodic properties of eigenfunctions, Usp. Math. Nauk., 29 (1974), 181-182.

[S] E. Stein, Harmonic Analysis, Princeton: Princeton Univ. Press, 1993.

[Su] T. Sunada, Quantum ergodicity, preprint 1994. | Zbl

[Th] W. Thirring, A Course in Mathematical Physics, vol. 4 : Quantum Mechanics of Large Systems, Springer-Verlag, New York, 1983. | Zbl

[UZ] A. Uribe and S. Zelditch, Spectral statistics on Zoll surfaces, Comm. Math. Phys. 154 (1993), 313-346. | MR | Zbl

[W] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer-Verlag, NY (1982). | MR | Zbl

[Wei] A. Weinstein, Fourier Integral Operators, quantization, and the spectrum of a Riemannian manifold, Colloques Internationaux C.N.R.S. 237, Géométrie Symplectique et Physique (1976).

[We] J. Weitsman, Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one, Comm.Math.Phys., 137 (1991), 175-190. | MR | Zbl

[Z1] S. Zelditch, Quantum ergodicity of C*-dynamical systems, (Comm.Math.Phys., 177 (1996), 507-528. | MR | Zbl

[Z2] S. Zelditch, Quantum Mixing, J. Fun. Anal., 140 (1996), 68-86. | MR | Zbl

[Z3] S. Zelditch, Quantum transition amplitudes for ergodic and for completely integrable systems, J. Fun. Anal., 94 (1990), 415-436. | MR | Zbl

  • Paoletti, Roberto Poisson and Szegö kernel scaling asymptotics on Grauert tube boundaries (after Zelditch, Chang and Rabinowitz), Bollettino dell'Unione Matematica Italiana, Volume 17 (2024) no. 4, p. 767 | DOI:10.1007/s40574-024-00412-z
  • Faure, Frédéric; Tsujii, Masato Micro-local analysis of contact Anosov flows and band structure of the Ruelle spectrum, Communications of the American Mathematical Society, Volume 4 (2024) no. 15, p. 641 | DOI:10.1090/cams/40
  • Shou, Laura Pointwise Weyl Law for Graphs from Quantized Interval Maps, Annales Henri Poincaré, Volume 24 (2023) no. 8, p. 2833 | DOI:10.1007/s00023-023-01276-3
  • Pucci, Patrizia; Temperini, Letizia Existence for singular critical exponential (𝑝, 𝑄) equations in the Heisenberg group, Advances in Calculus of Variations, Volume 15 (2022) no. 3, p. 601 | DOI:10.1515/acv-2020-0028
  • Dyatlov, Semyon Around quantum ergodicity, Annales mathématiques du Québec, Volume 46 (2022) no. 1, p. 11 | DOI:10.1007/s40316-021-00165-7
  • Ioos, Louis Geometric quantization of symplectic maps and Witten's asymptotic conjecture, Advances in Mathematics, Volume 387 (2021), p. 107840 | DOI:10.1016/j.aim.2021.107840
  • Zelditch, Steve Interfaces in Spectral Asymptotics and Nodal Sets, Frontiers in Analysis and Probability (2020), p. 383 | DOI:10.1007/978-3-030-56409-4_10
  • Gell-Redman, Jesse; Hassell, Andrew The Distribution of Phase Shifts for Semiclassical Potentials with Polynomial Decay, International Mathematics Research Notices, Volume 2020 (2020) no. 19, p. 6294 | DOI:10.1093/imrn/rny180
  • Ioos, Louis Geometric quantization of Hamiltonian flows and the Gutzwiller trace formula, Letters in Mathematical Physics, Volume 110 (2020) no. 7, p. 1585 | DOI:10.1007/s11005-020-01267-z
  • Kordyukov, Yuri A. Semiclassical spectral analysis of Toeplitz operators on symplectic manifolds: the case of discrete wells, Mathematische Zeitschrift, Volume 296 (2020) no. 3-4, p. 911 | DOI:10.1007/s00209-020-02462-3
  • Pucci, Patrizia; Temperini, Letizia Existence for (p,q) critical systems in the Heisenberg group, Advances in Nonlinear Analysis, Volume 9 (2019) no. 1, p. 895 | DOI:10.1515/anona-2020-0032
  • Gell-Redman, Jesse; Ingremeau, Maxime Equidistribution of phase shifts in obstacle scattering, Communications in Partial Differential Equations, Volume 44 (2019) no. 1, p. 1 | DOI:10.1080/03605302.2018.1499778
  • Zelditch, Steve; Zhou, Peng Central limit theorem for spectral partial Bergman kernels, Geometry Topology, Volume 23 (2019) no. 4, p. 1961 | DOI:10.2140/gt.2019.23.1961
  • Zelditch, Steve; Zhou, Peng Pointwise Weyl Law for Partial Bergman Kernels, Algebraic and Analytic Microlocal Analysis, Volume 269 (2018), p. 589 | DOI:10.1007/978-3-030-01588-6_13
  • Chang, Robert; Zelditch, Steve Log-Scale Equidistribution of Zeros of Quantum Ergodic Eigensections, Annales Henri Poincaré, Volume 19 (2018) no. 12, p. 3783 | DOI:10.1007/s00023-018-0735-x
  • Zelditch, Steve Quantum Ergodic Sequences and Equilibrium Measures, Constructive Approximation, Volume 47 (2018) no. 1, p. 89 | DOI:10.1007/s00365-017-9397-z
  • Paoletti, Roberto Local Scaling Asymptotics for the Gutzwiller Trace Formula in Berezin–Toeplitz Quantization, The Journal of Geometric Analysis, Volume 28 (2018) no. 2, p. 1548 | DOI:10.1007/s12220-017-9878-0
  • Andersen, Jørgen; Petersen, William Asymptotic expansions of the Witten–Reshetikhin–Turaev invariants of mapping tori I, Transactions of the American Mathematical Society, Volume 372 (2018) no. 8, p. 5713 | DOI:10.1090/tran/7740
  • Bolte, Jens; Egger, Sebastian; Keppeler, Stefan A Gutzwiller trace formula for large hermitian matrices, Reviews in Mathematical Physics, Volume 29 (2017) no. 08, p. 1750027 | DOI:10.1142/s0129055x17500271
  • Battisti, Ubertino; Coriasco, Sandro; Schrohe, Elmar Fourier integral operators and the index of symplectomorphisms on manifolds with boundary, Journal of Functional Analysis, Volume 269 (2015) no. 11, p. 3528 | DOI:10.1016/j.jfa.2015.06.001
  • Gell-Redman, Jesse; Hassell, Andrew; Zelditch, Steve Equidistribution of phase shifts in semiclassical potential scattering, Journal of the London Mathematical Society, Volume 91 (2015) no. 1, p. 159 | DOI:10.1112/jlms/jdu068
  • Stenzel, Matthew B. The Poisson transform on a compact real analytic Riemannian manifold, Monatshefte für Mathematik, Volume 178 (2015) no. 2, p. 299 | DOI:10.1007/s00605-015-0798-4
  • Paoletti, R. Lower-order asymptotics for Szegö and Toeplitz kernels under Hamiltonian circle actions, Recent Advances in Algebraic Geometry (2015), p. 321 | DOI:10.1017/cbo9781107416000.018
  • Le Floch, Yohann Singular Bohr–Sommerfeld conditions for 1D Toeplitz operators: hyperbolic case, Analysis PDE, Volume 7 (2014) no. 7, p. 1595 | DOI:10.2140/apde.2014.7.1595
  • Datchev, Kiril; Gell-Redman, Jesse; Hassell, Andrew; Humphries, Peter Approximation and Equidistribution of Phase Shifts: Spherical Symmetry, Communications in Mathematical Physics, Volume 326 (2014) no. 1, p. 209 | DOI:10.1007/s00220-013-1841-8
  • Paoletti, Roberto Local scaling asymptotics in phase space and time in Berezin–Toeplitz quantization, International Journal of Mathematics, Volume 25 (2014) no. 06, p. 1450060 | DOI:10.1142/s0129167x14500608
  • Nonnenmacher, Stéphane Anatomy of Quantum Chaotic Eigenstates, Chaos, Volume 66 (2013), p. 193 | DOI:10.1007/978-3-0348-0697-8_6
  • PAOLETTI, ROBERTO SCALING ASYMPTOTICS FOR QUANTIZED HAMILTONIAN FLOWS, International Journal of Mathematics, Volume 23 (2012) no. 10, p. 1250102 | DOI:10.1142/s0129167x12501029
  • Paoletti, Roberto Local trace formulae and scaling asymptotics for general quantized Hamiltonian flows, Journal of Mathematical Physics, Volume 53 (2012) no. 2 | DOI:10.1063/1.3679660
  • Olofsson, Rikard Large Newforms of the Quantized Cat Map Revisited, Annales Henri Poincaré, Volume 11 (2010) no. 7, p. 1285 | DOI:10.1007/s00023-010-0057-0
  • Paoletti, R. Local Asymptotics for Slowly Shrinking Spectral Bands of a Berezin-Toeplitz Operator, International Mathematics Research Notices (2010) | DOI:10.1093/imrn/rnq109
  • Charles, Laurent A Lefschetz fixed point formula for symplectomorphisms, Journal of Geometry and Physics, Volume 60 (2010) no. 12, p. 1890 | DOI:10.1016/j.geomphys.2010.07.002
  • Olofsson, Rikard Hecke Eigenfunctions of Quantized Cat Maps Modulo Prime Powers, Annales Henri Poincaré, Volume 10 (2009) no. 6 | DOI:10.1007/s00023-009-0011-1
  • Olofsson, Rikard Large Supremum Norms and Small Shannon Entropy for Hecke Eigenfunctions of Quantized Cat Maps, Communications in Mathematical Physics, Volume 286 (2009) no. 3, p. 1051 | DOI:10.1007/s00220-008-0627-x
  • Paoletti, Roberto Szegö kernels, Toeplitz operators, and equivariant fixed point formulae, Journal d'Analyse Mathématique, Volume 106 (2008) no. 1, p. 209 | DOI:10.1007/s11854-008-0048-y
  • Foth, T.; Uribe, A. The Manifold of Compatible Almost Complex Structures and Geometric Quantization, Communications in Mathematical Physics, Volume 274 (2007) no. 2, p. 357 | DOI:10.1007/s00220-007-0280-9
  • Zelditch, Steve Quantum maps and automorphisms, The Breadth of Symplectic and Poisson Geometry, Volume 232 (2007), p. 623 | DOI:10.1007/0-8176-4419-9_22
  • Rudnick, Zeév THE ARITHMETIC THEORY OF QUANTUM MAPS, Equidistribution in Number Theory, An Introduction, Volume 237 (2006), p. 331 | DOI:10.1007/978-1-4020-5404-4_15
  • Marklof, Jens; O'Keefe, Stephen; Zelditch, Steve Weyl's law and quantum ergodicity for maps with divided phase space (with an appendix Converse quantum ergodicity), Nonlinearity, Volume 18 (2005) no. 1, p. 277 | DOI:10.1088/0951-7715/18/1/015
  • Esposti, M Degli; O'Keefe, S; Winn, B A semi-classical study of the Casati–Prosen triangle map, Nonlinearity, Volume 18 (2005) no. 3, p. 1073 | DOI:10.1088/0951-7715/18/3/009
  • Schulte, Jörg Harmonic analysis on finite Heisenberg groups, European Journal of Combinatorics, Volume 25 (2004) no. 3, p. 327 | DOI:10.1016/j.ejc.2003.10.003
  • Fannjiang, Albert; Nonnenmacher, Stéphane; Wo owski, Lech Dissipation time and decay of correlations, Nonlinearity, Volume 17 (2004) no. 4, p. 1481 | DOI:10.1088/0951-7715/17/4/018
  • Charles, L. Quasimodes and Bohr-Sommerfeld Conditions for the Toeplitz Operators, Communications in Partial Differential Equations, Volume 28 (2003) no. 9-10, p. 1527 | DOI:10.1081/pde-120024521
  • Bonechi, Francesco; De Bièvre, Stephan Controlling strong scarring for quantized ergodic toral automorphisms, Duke Mathematical Journal, Volume 117 (2003) no. 3 | DOI:10.1215/s0012-7094-03-11736-6
  • Gamburd, Alex; Lafferty, John; Rockmore, Dan Eigenvalue spacings for quantized cat maps, Journal of Physics A: Mathematical and General, Volume 36 (2003) no. 12, p. 3487 | DOI:10.1088/0305-4470/36/12/336
  • Nonnenmacher, St phane Spectral properties of noisy classical and quantum propagators, Nonlinearity, Volume 16 (2003) no. 5, p. 1685 | DOI:10.1088/0951-7715/16/5/309
  • Esposti, Mirko Degli; Graffi, Sandro Mathematical Aspects of Quantum Maps, The Mathematical Aspects of Quantum Maps, Volume 618 (2003), p. 49 | DOI:10.1007/3-540-37045-5_3
  • Bäcker, Arnd Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems, The Mathematical Aspects of Quantum Maps, Volume 618 (2003), p. 91 | DOI:10.1007/3-540-37045-5_4
  • Nonnenmacher, S.; Zirnbauer, M. R. Det-Det correlations for quantum maps: Dual pair and saddle-point analyses, Journal of Mathematical Physics, Volume 43 (2002) no. 5, p. 2214 | DOI:10.1063/1.1462417
  • Mezzadri, Francesco On the multiplicativity of quantum cat maps, Nonlinearity, Volume 15 (2002) no. 3, p. 905 | DOI:10.1088/0951-7715/15/3/323
  • Rudnick, Zeév On Quantum Unique Ergodicity for Linear Maps of the Torus, European Congress of Mathematics (2001), p. 429 | DOI:10.1007/978-3-0348-8266-8_37
  • Kurlberg, Pär; Rudnick, Zeév Hecke theory and equidistribution for the quantization of linear maps of the torus, Duke Mathematical Journal, Volume 103 (2000) no. 1 | DOI:10.1215/s0012-7094-00-10314-6
  • Keating, J P; Mezzadri, F Pseudo-symmetries of Anosov maps and spectral statistics, Nonlinearity, Volume 13 (2000) no. 3, p. 747 | DOI:10.1088/0951-7715/13/3/313
  • Bouzouina, Abdelkader; De Bièvre, Stephan Equidistribution des valeurs propres et ergodicité semi-classique de symplectomorphismes du tore quantifiés, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics, Volume 326 (1998) no. 8, p. 1021 | DOI:10.1016/s0764-4442(98)80134-1

Cité par 54 documents. Sources : Crossref