Spectral synthesis and the Pompeiu problem
Annales de l'Institut Fourier, Tome 23 (1973) no. 3, pp. 125-154.

On démontre que chaque sous-espace vectoriel fermé V de C(Rn) ou de E(Rn), n2, invariant par toutes les rotations et toutes les translations de Rn est un espace de synthèse spectrale, c’est-à-dire, V est engendré par les exponentielles-polynômes qu’il contient. C’est un problème classique de déterminer toutes les mesures μ à support compact dans R2 qui possèdent la propriété suivante : (P) Si fC(R2) et R2fσdμ=0 quel que soit la transformation rigide σ de R2, alors f0. Comme application du résultat ci-dessus on caractérise ces mesures moyennant les transformées de Fourier-Laplace. Ce résultat et quelques estimations asymptotiques de la croissance des transformées de Fourier-Laplace le long de certaines courbes tendant vers l’infini montrent que, pour une classe assez grande de régions compactes de R2, les mesures de surface satisfont à la condition (P). Le théorème de synthèse spectrale implique aussi un théorème de Delsarte (deux cercles) se rapportant aux fonctions harmoniques et quelques résultats analogues au théorème de Morera.

It is shown that every closed rotation and translation invariant subspace V of C(Rn) or δ(Rn), n2, is of spectral synthesis, i.e. V is spanned by the polynomial-exponential functions it contains. It is a classical problem to find those measures μ of compact support on R2 with the following property: (P) The only function fC(R2) satisfying R2fσdμ=0 for all rigid motions σ of R2 is the zero function. As an application of the above result a characterization of such measures is obtained in terms of their Fourier-Laplace transforms. Using this characterization, along with asymptotic estimates of the growth of Fourier-Laplace transforms along certain curves, it is shown that property (P) is satisfied by the area measures on a large class of compact regions in the plane. The spectral synthesis theorem also implies Delsarte’s two circle theorem for harmonic functions and other results related to Morera’s converse of the Cauchy integral theorem.

@article{AIF_1973__23_3_125_0,
     author = {Brown, L. and Schreiber, B. and Taylor, B. A.},
     title = {Spectral synthesis and the {Pompeiu} problem},
     journal = {Annales de l'Institut Fourier},
     pages = {125--154},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {23},
     number = {3},
     year = {1973},
     doi = {10.5802/aif.474},
     mrnumber = {50 #4979},
     zbl = {0265.46044},
     language = {en},
     url = {https://numdam.org/articles/10.5802/aif.474/}
}
TY  - JOUR
AU  - Brown, L.
AU  - Schreiber, B.
AU  - Taylor, B. A.
TI  - Spectral synthesis and the Pompeiu problem
JO  - Annales de l'Institut Fourier
PY  - 1973
SP  - 125
EP  - 154
VL  - 23
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://numdam.org/articles/10.5802/aif.474/
DO  - 10.5802/aif.474
LA  - en
ID  - AIF_1973__23_3_125_0
ER  - 
%0 Journal Article
%A Brown, L.
%A Schreiber, B.
%A Taylor, B. A.
%T Spectral synthesis and the Pompeiu problem
%J Annales de l'Institut Fourier
%D 1973
%P 125-154
%V 23
%N 3
%I Institut Fourier
%C Grenoble
%U https://numdam.org/articles/10.5802/aif.474/
%R 10.5802/aif.474
%G en
%F AIF_1973__23_3_125_0
Brown, L.; Schreiber, B.; Taylor, B. A. Spectral synthesis and the Pompeiu problem. Annales de l'Institut Fourier, Tome 23 (1973) no. 3, pp. 125-154. doi : 10.5802/aif.474. https://numdam.org/articles/10.5802/aif.474/

[1] L. Brown, F. Schnitzer and A.L. Shields, A note on a problem of D. Pompeiu, Math. Zeitschr., 105 (1968), 59-61. | MR | Zbl

[2] C. Christov, Sur un problème de M. Pompeiu, Mathematica (Timisoara), 23 (1948), 103-107. | MR | Zbl

[3] C. Christov, Sur l'équation intégrale généralisée de M. Pompeiu, Annuaire Univ. Sofia Fac. Sci., Livre 1, 45 (1948-1949), 167-178.

[4] R.V. Churchill, Fourier Series and Boundary Value Problems, 2nd ed., McGraw-Hill, New York, 1963. | MR | Zbl

[5] J. Delsarte, Note sur une propriété nouvelle des fonctions harmoniques, C.R. Acad. Sci. Paris, 246 (1958), 1358-1360. | MR | Zbl

[6] J. Delsarte, Lectures on Topics in Mean Periodic Functions and the Two-Radius Theorem, Notes by K.B. Vedak, Tata Institute of Fundamental Research, Bombay, 1961.

[7] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Interscience, Wiley, New York, 1970. | MR | Zbl

[8] T.W. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, N.J., 1969. | MR | Zbl

[9] L. Hörmander, Linear Partial Differential Operators, Grundl. der Math. Wiss., Band 116, Springer-Verlag and Academic Press, New York, 1963. | MR | Zbl

[10] L. Hörmander, An Introduction to Complex Analysis in Several Variables, D. van Nostrand, New York, 1966. | MR | Zbl

[11] J.J. Kelleher and B.A. Taylor, Closed ideals in locally convex algebras of analytic functions, J. Reine Angew. Math., 255 (1972), 190-209. | EuDML | MR | Zbl

[12] B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier (Grenoble), 6 (1955-1956), 271-355. | EuDML | Numdam | MR | Zbl

[13] D. Pompeiu, Sur une propriété des fonctions continues dépendent de plusieurs variables, Bull. Sci. Math. (2), 53 (1929), 328-332. | JFM

[14] D. Pompeiu, Sur une propriété intégrale des fonctions de deux variables réelles, Bull. Sci. Acad. Royale Belgique (5), 15 (1929), 265-269. | JFM

[15] S.P. Ponomarev, On a condition for analyticity, Sibirskii Mat. Zh., 11 (1970), 471-474. | MR | Zbl

[16] W. Rudin, Fourier Analysis on Groups, Interscience, Wiley, New York, 1962. | MR | Zbl

[17] L. Schwartz, Théorie générale des fonctions moyennes-périodiques, Ann. of Math. (2), 48 (1947), 857-929. | MR | Zbl

[18] L. Schwartz, Théorie des distributions, 2nd. ed., Act. Scient. et Indust., No. 1091, Hermann, Paris, 1957. | Zbl

[19] L. Zalcman, Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal., 47 (1972), 237-254. | MR | Zbl

  • Kolountzakis, M. N.; Spyridakis, E. Curves in the Fourier zeros of polytopal regions and the Pompeiu problem, Analysis Mathematica, Volume 50 (2024) no. 4, p. 1081 | DOI:10.1007/s10476-024-00054-5
  • Volchkov, Valerii Vladimirovich; Volchkov, Vitalii Vladimirovich Uniqueness of solutions of generalized convolution equations on the hyperbolic plane and the group PSL(2,R), Izvestiya: Mathematics, Volume 88 (2024) no. 6, p. 1050 | DOI:10.4213/im9530e
  • Barutello, Vivina; Costantini, Camillo On the one-dimensional Pompeiu problem, Nonlinear Differential Equations and Applications NoDEA, Volume 31 (2024) no. 4 | DOI:10.1007/s00030-024-00940-9
  • Kow, Pu-Zhao; Shahgholian, Henrik Multi-phase k-quadrature domains and applications to acoustic waves and magnetic fields, Partial Differential Equations and Applications, Volume 5 (2024) no. 3 | DOI:10.1007/s42985-024-00283-1
  • Kow, Pu-Zhao; Larson, Simon; Salo, Mikko; Shahgholian, Henrik Quadrature Domains for the Helmholtz Equation with Applications to Non-scattering Phenomena, Potential Analysis, Volume 60 (2024) no. 1, p. 387 | DOI:10.1007/s11118-022-10054-5
  • Volchkova, Natalia P.; Volchkov, Vitaliy V. On the harmonicity of a function with a Bôcher-Koebe type condition, Russian Universities Reports. Mathematics (2024) no. 146, p. 125 | DOI:10.20310/2686-9667-2024-29-146-125-137
  • Volchkova, N. P.; Volchkov, Vit. V. Characterization of Holomorphic Functions by Zero Spherical Means, Siberian Advances in Mathematics, Volume 34 (2024) no. 3, p. 249 | DOI:10.1134/s1055134424030076
  • Volchkov, Valerii Vladimirovich; Volchkov, Vitalii Vladimirovich Единственность решений уравнений обобщенной свертки на гиперболической плоскости и группе PSL(2,R), Известия Российской академии наук. Серия математическая, Volume 88 (2024) no. 6, p. 44 | DOI:10.4213/im9530
  • Volchkov, Valery; Volchkov, Vitaly Zalcman’s problem and related two-radii theorems, Analysis and Mathematical Physics, Volume 13 (2023) no. 5 | DOI:10.1007/s13324-023-00835-5
  • Machado, Fabrício Caluza; Robins, Sinai The null set of a polytope, and the Pompeiu property for polytopes, Journal d'Analyse Mathématique, Volume 150 (2023) no. 2, p. 673 | DOI:10.1007/s11854-023-0290-3
  • Volchkov, V. V.; Volchkov, Vit. V. Spectral Synthesis on the Reduced Heisenberg Group, Mathematical Notes, Volume 113 (2023) no. 1-2, p. 49 | DOI:10.1134/s0001434623010066
  • Volchkov, Valerii Vladimirovich; Volchkov, Vitalii Vladimirovich Спектральный синтез на редуцированной группе Гейзенберга, Математические заметки, Volume 113 (2023) no. 1, p. 46 | DOI:10.4213/mzm13617
  • Kiss, Gergely; Malikiosis, Romanos Diogenes; Somlai, Gábor; Vizer, Máté On the discrete Fuglede and Pompeiu problems, Analysis PDE, Volume 13 (2020) no. 3, p. 765 | DOI:10.2140/apde.2020.13.765
  • Volchkov, V. V.; Volchkov, Vit. V. An Analog of the Brown–Schreiber–Taylor Theorem for Weighted Hyperbolic Shifts, Mathematical Notes, Volume 103 (2018) no. 1-2, p. 175 | DOI:10.1134/s0001434618010194
  • Volchkov, V V; Volchkov, V V Spectral synthesis on the group of conformal automorphisms of the unit disc, Sbornik: Mathematics, Volume 209 (2018) no. 1, p. 1 | DOI:10.1070/sm8805
  • Volchkov, Valerii Vladimirovich; Volchkov, Vitalii Vladimirovich Аналог теоремы Брауна-Шрейбера-Тейлора для взвешенных гиперболических сдвигов, Математические заметки, Volume 103 (2018) no. 2, p. 172 | DOI:10.4213/mzm11570
  • Volchkov, Valerii Vladimirovich; Volchkov, Vitalii Vladimirovich Спектральный синтез на группе конформных автоморфизмов единичного круга, Математический сборник, Volume 209 (2018) no. 1, p. 3 | DOI:10.4213/sm8805
  • Volchkov, Valery V.; Volchkov, Vitaly V. An analog of the Schwartz theorem on spectral analysis on a hyperbolic plane, Journal of Mathematical Sciences, Volume 214 (2016) no. 2, p. 172 | DOI:10.1007/s10958-016-2767-4
  • Volchkov, V V; Volchkov, V V Spectral analysis on the group of conformal automorphisms of the unit disc, Sbornik: Mathematics, Volume 207 (2016) no. 7, p. 942 | DOI:10.1070/sm8534
  • Volchkov, Valerii Vladimirovich; Volchkov, Vitalii Vladimirovich Спектральный анализ на группе конформных автоморфизмов единичного круга, Математический сборник, Volume 207 (2016) no. 7, p. 57 | DOI:10.4213/sm8534
  • Volchkov, V V; Volchkov, V V Local two-radii theorems on the multi-dimensional sphere, Izvestiya: Mathematics, Volume 78 (2014) no. 1, p. 1 | DOI:10.1070/im2014v078n01abeh002677
  • Волчков, Валерий Владимирович; Volchkov, Valerii Vladimirovich; Волчков, Виталий Владимирович; Volchkov, Vitaly Vladimirovich Локальные теоремы о двух радиусах на многомерной сфере, Известия Российской академии наук. Серия математическая, Volume 78 (2014) no. 1, p. 3 | DOI:10.4213/im8010
  • Volchkov, Valerii V; Volchkov, Vitaly V Spherical means on two-point homogeneous spaces and applications, Izvestiya: Mathematics, Volume 77 (2013) no. 2, p. 223 | DOI:10.1070/im2013v077n02abeh002634
  • Volchkov, Valerii Vladimirovich; Volchkov, Vitalii Vladimirovich Two-radii theorems for quasi-analytic classes of functions on a sphere, Journal of Mathematical Sciences, Volume 194 (2013) no. 5, p. 584 | DOI:10.1007/s10958-013-1548-6
  • Волчков, Валерий Владимирович; Volchkov, Valerii Vladimirovich; Волчков, Виталий Владимирович; Volchkov, Vitaly Vladimirovich Сферические средние на двухточечно-однородных пространствах и их приложения, Известия Российской академии наук. Серия математическая, Volume 77 (2013) no. 2, p. 3 | DOI:10.4213/im7956
  • Deng, Jian Some results on the Schiffer conjecture in R2, Journal of Differential Equations, Volume 253 (2012) no. 8, p. 2515 | DOI:10.1016/j.jde.2012.06.002
  • Agranovsky, Mark; Zalcman, Lawrence Analyticity on Curves, The Mathematical Legacy of Leon Ehrenpreis, Volume 16 (2012), p. 25 | DOI:10.1007/978-88-470-1947-8_4
  • Narayanan, E. K.; Sitaram, Alladi Analogues of the Wiener Tauberian and Schwartz theorems for radial functions on symmetric spaces, Pacific Journal of Mathematics, Volume 249 (2011) no. 1, p. 199 | DOI:10.2140/pjm.2011.249.199
  • Eby, Wayne M. POMPEIU PROBLEM FOR THE HEISENBERG BALL, Taiwanese Journal of Mathematics, Volume 15 (2011) no. 6 | DOI:10.11650/twjm/1500406483
  • Peyerimhoff, Norbert; Samiou, Evangelia Spherical spectral synthesis and two-radius theorems on Damek–Ricci spaces, Arkiv för Matematik, Volume 48 (2010) no. 1, p. 131 | DOI:10.1007/s11512-009-0105-5
  • Volchkov, Valerii V; Volchkov, Vitaly V On a problem of Berenstein-Gay and its generalizations, Izvestiya: Mathematics, Volume 74 (2010) no. 4, p. 691 | DOI:10.1070/im2010v074n04abeh002503
  • Kerman, R. A.; Weit, Yitzhak On the Translates of Powers of a Continuous Periodic Function, Journal of Fourier Analysis and Applications, Volume 16 (2010) no. 5, p. 786 | DOI:10.1007/s00041-010-9139-0
  • Volchkov, V. V.; Volchkov, Vit. V. Sets with the Pompeiu property on the plane and on the sphere, Mathematical Notes, Volume 87 (2010) no. 1-2, p. 59 | DOI:10.1134/s0001434610010086
  • Волчков, Валерий Владимирович; Volchkov, Valerii Vladimirovich; Волчков, Виталий Владимирович; Volchkov, Vitaly Vladimirovich Об одной проблеме Беренстейна - Гэя и ее обобщениях, Известия Российской академии наук. Серия математическая, Volume 74 (2010) no. 4, p. 33 | DOI:10.4213/im2798
  • Волчков, Валерий Владимирович; Volchkov, Valerii Vladimirovich; Волчков, Виталий Владимирович; Volchkov, Vitaly Vladimirovich Множества со свойством Помпейю на плоскости и сфере, Математические заметки, Volume 87 (2010) no. 1, p. 69 | DOI:10.4213/mzm5158
  • Benguria, Rafael; Levitin, Michael; Parnovski, Leonid Fourier transform, null variety, and Laplacian's eigenvalues, Journal of Functional Analysis, Volume 257 (2009) no. 7, p. 2088 | DOI:10.1016/j.jfa.2009.06.022
  • Nessibi, M.M.; Selmi, B. A Wiener–Tauberian and a Pompeiu type theorems on the Laguerre hypergroup, Journal of Mathematical Analysis and Applications, Volume 351 (2009) no. 1, p. 232 | DOI:10.1016/j.jmaa.2008.10.023
  • Volchkov, V. V.; Volchkov, Vit. V. Convolution equations and the local Pompeiu property on symmetric spaces and on phase space associated to the Heisenberg group, Journal d'Analyse Mathématique, Volume 105 (2008) no. 1, p. 43 | DOI:10.1007/s11854-008-0031-7
  • Chang, Der-Chen; Eby, Wayne POMPEIU PROBLEM FOR SETS OF HIGHER CODIMENSION IN EUCLIDEAN AND HEISENBERG SETTINGS, Taiwanese Journal of Mathematics, Volume 12 (2008) no. 9 | DOI:10.11650/twjm/1500405199
  • Волчков, Валерий Владимирович; Volchkov, Valerii Vladimirovich; Волчков, Виталий Владимирович; Volchkov, Vitaly Vladimirovich Уравнения свертки на многомерных областях и редуцированной группе Гейзенберга, Математический сборник, Volume 199 (2008) no. 8, p. 29 | DOI:10.4213/sm3945
  • Liu, Genqian Symmetry theorems for the overdetermined eigenvalue problems, Journal of Differential Equations, Volume 233 (2007) no. 2, p. 585 | DOI:10.1016/j.jde.2006.08.020
  • Selmi, B.; Nessibi, M.M. A local two radii theorem on the Chébli–Trimèche hypergroup, Journal of Mathematical Analysis and Applications, Volume 329 (2007) no. 1, p. 163 | DOI:10.1016/j.jmaa.2006.06.061
  • Liu, Genqian Rellich type identities for eigenvalue problems and application to the Pompeiu problem, Journal of Mathematical Analysis and Applications, Volume 330 (2007) no. 2, p. 963 | DOI:10.1016/j.jmaa.2006.07.099
  • Berenstein, Carlos A.; Chang, Der-Chen; Eby, Wayne M. The Morera Problem in Clifford Algebras and the Heisenberg Group, Clifford Algebras (2004), p. 3 | DOI:10.1007/978-1-4612-2044-2_1
  • Berenstein a, Carlos; Chang b, Der-Chen; Eby, Wayne A Note on Hörmander's strongly coprime condition, Complex Variables, Theory and Application: An International Journal, Volume 49 (2004) no. 7-9, p. 473 | DOI:10.1080/02781070410001731648
  • Williams, Stephen A. Boundary regularity for a family of overdetermined problems for the Helmholtz equation, Journal of Mathematical Analysis and Applications, Volume 274 (2002) no. 1, p. 296 | DOI:10.1016/s0022-247x(02)00300-1
  • Segala, Fausto; Triossi, Matteo Branch points, Fourier integrals and Pompeiu problem, ANNALI DELL UNIVERSITA DI FERRARA, Volume 47 (2001) no. 1, p. 169 | DOI:10.1007/bf02838181
  • Berkani, Mohammed; Harchaoui, Mimoun El; Gay, Roger Inversion de la transformation de pompéiu locale dans l'espace hyperbolique quaternionique – cas des deux boules, Complex Variables, Theory and Application: An International Journal, Volume 43 (2000) no. 1, p. 29 | DOI:10.1080/17476930008815300
  • Hazewinkel, Michiel P, Encyclopaedia of Mathematics (2000), p. 378 | DOI:10.1007/978-94-015-1279-4_16
  • Aizenberg, L.; Liflyand, E. Mean-value characterization of holomorphicand pluriharmonic functions.ii, Complex Variables, Theory and Application: An International Journal, Volume 39 (1999) no. 4, p. 381 | DOI:10.1080/17476939908815204
  • Osses, Axel; Puel, Jean-Pierre Approximate controllability for a linear model of fluid structure interaction, ESAIM: Control, Optimisation and Calculus of Variations, Volume 4 (1999), p. 497 | DOI:10.1051/cocv:1999119
  • Osses, Axel; Puel, Jean-Pierre Approximate Controllability for a Hydro-Elastic Model in a Rectangular Domain, Optimal Control of Partial Differential Equations (1999), p. 231 | DOI:10.1007/978-3-0348-8691-8_20
  • Segala, Fausto Stability of the convex Pompeiu sets, Annali di Matematica Pura ed Applicata, Volume 175 (1998) no. 1, p. 295 | DOI:10.1007/bf01783689
  • Ramm, A.G. The pompeiu problem, Applicable Analysis, Volume 64 (1997) no. 1-2, p. 19 | DOI:10.1080/00036819708840520
  • Aizenberg, L.; Liflyand, E. Mean-value characterization of holomorphic and pluriharmonic functions, Complex Variables, Theory and Application: An International Journal, Volume 32 (1997) no. 2, p. 131 | DOI:10.1080/17476939708814984
  • Agranovsky, Mark L.; Semenov, Alexander M. Deformations of balls in Schiffer’s conjecture for Riemannian symmetric spaces, Israel Journal of Mathematics, Volume 95 (1996) no. 1, p. 43 | DOI:10.1007/bf02761034
  • Rawat, Rama A theorem of the Wiener—Tauberian type forL 1(H n), Proceedings of the Indian Academy of Sciences - Section A, Volume 106 (1996) no. 4, p. 369 | DOI:10.1007/bf02837694
  • Chamberland, Marc Mean Value Integral Equations and the Helmholtz Equation, Results in Mathematics, Volume 30 (1996) no. 1-2, p. 39 | DOI:10.1007/bf03322178
  • Rawat, Rama; Sitaram, Alladi The injectivity of the pompeiu transform andL p -analogues of the Wiener-Tauberian theorem, Israel Journal of Mathematics, Volume 91 (1995) no. 1-3, p. 307 | DOI:10.1007/bf02761653
  • Harchaoui, Mimoun El Inversion de la transformation de Pompeiu locale dans les espaces hyperboliques reel et complexe: Cas des deux boules, Journal d'Analyse Mathématique, Volume 67 (1995) no. 1, p. 1 | DOI:10.1007/bf02787785
  • Netuka, Ivan; Veselý, Jiří Mean Value Property and Harmonic Functions, Classical and Modern Potential Theory and Applications (1994), p. 359 | DOI:10.1007/978-94-011-1138-6_29
  • Johnsson, Gunnar The Cauchy problem in 𝐶^𝑁 for linear second order partial differential equations with data on a quadric surface, Transactions of the American Mathematical Society, Volume 344 (1994) no. 1, p. 1 | DOI:10.1090/s0002-9947-1994-1242782-7
  • Garofalo, Nicola; Segàla, Fausto Univalent functions and the Pompeiu problem, Transactions of the American Mathematical Society, Volume 346 (1994) no. 1, p. 137 | DOI:10.1090/s0002-9947-1994-1250819-4
  • Willms, N. B.; Gladwell, G. M. L. Saddle points and overdetermined problems for the Helmholtz equation, ZAMP Zeitschrift f�r angewandte Mathematik und Physik, Volume 45 (1994) no. 1, p. 1 | DOI:10.1007/bf00942843
  • Berenstein, C. A.; Struppa, D. C. Complex Analysis and Convolution Equations, Several Complex Variables V, Volume 54 (1993), p. 1 | DOI:10.1007/978-3-642-58011-6_1
  • Zalcman, L. A Bibliographic Survey of the Pompeiu Problem, Approximation by Solutions of Partial Differential Equations (1992), p. 185 | DOI:10.1007/978-94-011-2436-2_17
  • Bibliography, Functional Equations in Probability Theory (1991), p. 241 | DOI:10.1016/b978-0-12-437730-1.50015-8
  • Garofalo, Nicola; Segala, Fausto Asymptotic expansions for a class of Fourier integrals and applications to the Pompeiu problem, Journal d'Analyse Mathématique, Volume 56 (1991) no. 1, p. 1 | DOI:10.1007/bf02820458
  • Badertscher, Erich The Pompeiu Problem on locally symmetric spaces, Journal d’Analyse Mathématique, Volume 57 (1991) no. 1, p. 250 | DOI:10.1007/bf03041072
  • Carey, Alan L.; Kaniuth, Eberhard; Moran, William The Pompeiu problem for groups, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 109 (1991) no. 1, p. 45 | DOI:10.1017/s0305004100069553
  • Garofalo, Nicola; Segàla, Fausto New results on the Pompeiu problem, Transactions of the American Mathematical Society, Volume 325 (1991) no. 1, p. 273 | DOI:10.1090/s0002-9947-1991-0994165-x
  • Berenstein, C. A.; Gay, R.; Yger, A. Inversion of the local Pompeiu transform, Journal d'Analyse Mathématique, Volume 54 (1990) no. 1, p. 259 | DOI:10.1007/bf02796152
  • Cybenko, G. Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems, Volume 2 (1989) no. 4, p. 303 | DOI:10.1007/bf02551274
  • Sternfeld, Yaki; Weit, Yitzhak Affine invariant subspaces of 𝐶(𝐶), Proceedings of the American Mathematical Society, Volume 107 (1989) no. 1, p. 231 | DOI:10.1090/s0002-9939-1989-0979053-3
  • Weit, Yitzhak Spectral analysis in spaces of continuous functions, Function Spaces and Applications, Volume 1302 (1988), p. 420 | DOI:10.1007/bfb0078892
  • Scott, David; Sitaram, Alladi Some remarks on the Pompeiu problem for groups, Proceedings of the American Mathematical Society, Volume 104 (1988) no. 4, p. 1261 | DOI:10.1090/s0002-9939-1988-0931747-0
  • Wawrzyñczyk, Antoni Spectral analysis and synthesis on symmetric spaces, Journal of Mathematical Analysis and Applications, Volume 127 (1987) no. 1, p. 1 | DOI:10.1016/0022-247x(87)90137-5
  • Berenstein, Carlos A.; Gay, Roger A local version of the two-circles theorem, Israel Journal of Mathematics, Volume 55 (1986) no. 3, p. 267 | DOI:10.1007/bf02765026
  • Ramsey, Thomas; Weit, Yitzhak Mean values and classes of harmonic functions, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 96 (1984) no. 3, p. 501 | DOI:10.1017/s0305004100062435
  • Berenstein, Carlos A. A test for holomorphy in the unit ball of 𝐶ⁿ, Proceedings of the American Mathematical Society, Volume 90 (1984) no. 1, p. 88 | DOI:10.1090/s0002-9939-1984-0722421-0
  • Berenstein, C.A; Yger, A Le problème de la déconvolution, Journal of Functional Analysis, Volume 54 (1983) no. 2, p. 113 | DOI:10.1016/0022-1236(83)90051-4
  • Berenstein, C A; Taylor, B A; Yger, A On some explicit deconvolution formulas, Journal of Optics, Volume 14 (1983) no. 2, p. 75 | DOI:10.1088/0150-536x/14/2/003
  • Braun, Amiram; Weit, Yitzhak On invariant subspaces of continuous vector valued functions, Journal d'Analyse Mathématique, Volume 41 (1982) no. 1, p. 259 | DOI:10.1007/bf02803405
  • Brown, Leon; Kahane, Jean-Pierre A note on the Pompeiu problem for convex domains, Mathematische Annalen, Volume 259 (1982) no. 1, p. 107 | DOI:10.1007/bf01456832
  • Berenstein, Carlos A.; Gay, Roger Le probleme de Pompeiu local, Journal d'Analyse Mathématique, Volume 52 (1981) no. 1, p. 133 | DOI:10.1007/bf02820476
  • Benyamini, Yoav; Weit, Yitzhak Functions satisfying the mean value property in the limit, Journal d'Analyse Mathématique, Volume 52 (1981) no. 1, p. 167 | DOI:10.1007/bf02820477
  • Laird, P. G. A reconsideration of the ‘three squares’ problem, Aequationes Mathematicae, Volume 21 (1980) no. 1, p. 98 | DOI:10.1007/bf02189343
  • Berenstein, Carlos A.; Zalcman, Lawrence Pompeiu's problem on symmetric spaces, Commentarii Mathematici Helvetici, Volume 55 (1980) no. 1, p. 593 | DOI:10.1007/bf02566709
  • Berenstein, Carlos Alberto An inverse spectral theorem and its relation to the Pompeiu problem, Journal d'Analyse Mathématique, Volume 37 (1980) no. 1, p. 128 | DOI:10.1007/bf02797683
  • Berenstein, C. A.; Taylor, B. A. Interpolation problems in C n with applications to harmonic analysis, Journal d’Analyse Mathématique, Volume 38 (1980) no. 1, p. 188 | DOI:10.1007/bf03033881
  • Zalcman, Lawrence Offbeat Integral Geometry, The American Mathematical Monthly, Volume 87 (1980) no. 3, p. 161 | DOI:10.1080/00029890.1980.11994985
  • Bibliography, An Introduction to Classical Complex Analysis, Volume 82 (1979), p. 462 | DOI:10.1016/s0079-8169(08)61293-3
  • Berenstein, C. A.; Taylor, B. A. The “three-square” theorem for continuous functions, Archive for Rational Mechanics and Analysis, Volume 63 (1977) no. 3, p. 253 | DOI:10.1007/bf00251582
  • Williams, Stephen A. A partial solution of the Pompeiu problem, Mathematische Annalen, Volume 223 (1976) no. 2, p. 183 | DOI:10.1007/bf01360881

Cité par 94 documents. Sources : Crossref