The set of finite binary matrices of a given size is known to carry a finite type
@article{AIHPD_2023__10_4_715_0, author = {Gerber, Thomas and Lecouvey, C\'edric}, title = {Duality and bicrystals on infinite binary matrices}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {715--779}, volume = {10}, number = {4}, year = {2023}, doi = {10.4171/aihpd/165}, mrnumber = {4653796}, zbl = {1525.05194}, language = {en}, url = {https://numdam.org/articles/10.4171/aihpd/165/} }
TY - JOUR AU - Gerber, Thomas AU - Lecouvey, Cédric TI - Duality and bicrystals on infinite binary matrices JO - Annales de l’Institut Henri Poincaré D PY - 2023 SP - 715 EP - 779 VL - 10 IS - 4 UR - https://numdam.org/articles/10.4171/aihpd/165/ DO - 10.4171/aihpd/165 LA - en ID - AIHPD_2023__10_4_715_0 ER -
Gerber, Thomas; Lecouvey, Cédric. Duality and bicrystals on infinite binary matrices. Annales de l’Institut Henri Poincaré D, Tome 10 (2023) no. 4, pp. 715-779. doi : 10.4171/aihpd/165. https://numdam.org/articles/10.4171/aihpd/165/
Cité par Sources :