Simple Hurwitz numbers are classical invariants in enumerative geometry counting branched morphisms between Riemann surfaces with fixed ramification data. In recent years, several modifications of this notion for genus
Publié le :
DOI : 10.4171/aihpd/118
Keywords: Hurwitz numbers, quasimodular forms, quantum curves, recursions
@article{AIHPD_2022__9_2_239_0, author = {Hahn, Marvin and van Ittersum, Jan-Willem and Leid, Felix}, title = {Triply mixed coverings of arbitrary base curves: quasimodularity, quantum curves and a mysterious topological recursion}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {239--296}, volume = {9}, number = {2}, year = {2022}, doi = {10.4171/aihpd/118}, mrnumber = {4450015}, zbl = {1499.14090}, language = {en}, url = {https://numdam.org/articles/10.4171/aihpd/118/} }
TY - JOUR AU - Hahn, Marvin AU - van Ittersum, Jan-Willem AU - Leid, Felix TI - Triply mixed coverings of arbitrary base curves: quasimodularity, quantum curves and a mysterious topological recursion JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 239 EP - 296 VL - 9 IS - 2 UR - https://numdam.org/articles/10.4171/aihpd/118/ DO - 10.4171/aihpd/118 LA - en ID - AIHPD_2022__9_2_239_0 ER -
%0 Journal Article %A Hahn, Marvin %A van Ittersum, Jan-Willem %A Leid, Felix %T Triply mixed coverings of arbitrary base curves: quasimodularity, quantum curves and a mysterious topological recursion %J Annales de l’Institut Henri Poincaré D %D 2022 %P 239-296 %V 9 %N 2 %U https://numdam.org/articles/10.4171/aihpd/118/ %R 10.4171/aihpd/118 %G en %F AIHPD_2022__9_2_239_0
Hahn, Marvin; van Ittersum, Jan-Willem; Leid, Felix. Triply mixed coverings of arbitrary base curves: quasimodularity, quantum curves and a mysterious topological recursion. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 2, pp. 239-296. doi : 10.4171/aihpd/118. https://numdam.org/articles/10.4171/aihpd/118/
Cité par Sources :