We study generating series of Gromov–Witten invariants of
Publié le :
DOI : 10.4171/aihpd/115
Keywords: Elliptic fibrations, Feynman integral, tropical geometry, Gromov–Witten invariants, quasimodular forms
@article{AIHPD_2022__9_1_121_0, author = {B\"ohm, Janko and Goldner, Christoph and Markwig, Hannah}, title = {Counts of (tropical) curves in $E \times \mathbb{P}^1$ and {Feynman} integrals}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {121--158}, volume = {9}, number = {1}, year = {2022}, doi = {10.4171/aihpd/115}, zbl = {1492.14100}, mrnumber = {4408000}, language = {en}, url = {https://numdam.org/articles/10.4171/aihpd/115/} }
TY - JOUR AU - Böhm, Janko AU - Goldner, Christoph AU - Markwig, Hannah TI - Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 121 EP - 158 VL - 9 IS - 1 UR - https://numdam.org/articles/10.4171/aihpd/115/ DO - 10.4171/aihpd/115 LA - en ID - AIHPD_2022__9_1_121_0 ER -
%0 Journal Article %A Böhm, Janko %A Goldner, Christoph %A Markwig, Hannah %T Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals %J Annales de l’Institut Henri Poincaré D %D 2022 %P 121-158 %V 9 %N 1 %U https://numdam.org/articles/10.4171/aihpd/115/ %R 10.4171/aihpd/115 %G en %F AIHPD_2022__9_1_121_0
Böhm, Janko; Goldner, Christoph; Markwig, Hannah. Counts of (tropical) curves in $E \times \mathbb{P}^1$ and Feynman integrals. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 1, pp. 121-158. doi : 10.4171/aihpd/115. https://numdam.org/articles/10.4171/aihpd/115/
Cité par Sources :