The relation between the 2d Ising partition function and spin network evaluations, reflecting a bulk-boundary duality between the 2d Ising model and 3d quantum gravity, promises an exchange of results and methods between statistical physics and quantum geometry. We apply this relation to the case of the tetrahedral graph. First, we find that the high/low temperature duality of the 2d Ising model translates into a new self-duality formula for Wigner’s
Publié le :
DOI : 10.4171/aihpd/114
Keywords: Ising model, Fisher zeros, duality, quantum gravity,
@article{AIHPD_2022__9_1_73_0, author = {Bonzom, Valentin and Livine, Etera R.}, title = {Self-duality of the $6j$-symbol and {Fisher} zeros for the tetrahedron}, journal = {Annales de l{\textquoteright}Institut Henri Poincar\'e D}, pages = {73--119}, volume = {9}, number = {1}, year = {2022}, doi = {10.4171/aihpd/114}, mrnumber = {4407999}, zbl = {1492.82007}, language = {en}, url = {https://numdam.org/articles/10.4171/aihpd/114/} }
TY - JOUR AU - Bonzom, Valentin AU - Livine, Etera R. TI - Self-duality of the $6j$-symbol and Fisher zeros for the tetrahedron JO - Annales de l’Institut Henri Poincaré D PY - 2022 SP - 73 EP - 119 VL - 9 IS - 1 UR - https://numdam.org/articles/10.4171/aihpd/114/ DO - 10.4171/aihpd/114 LA - en ID - AIHPD_2022__9_1_73_0 ER -
%0 Journal Article %A Bonzom, Valentin %A Livine, Etera R. %T Self-duality of the $6j$-symbol and Fisher zeros for the tetrahedron %J Annales de l’Institut Henri Poincaré D %D 2022 %P 73-119 %V 9 %N 1 %U https://numdam.org/articles/10.4171/aihpd/114/ %R 10.4171/aihpd/114 %G en %F AIHPD_2022__9_1_73_0
Bonzom, Valentin; Livine, Etera R. Self-duality of the $6j$-symbol and Fisher zeros for the tetrahedron. Annales de l’Institut Henri Poincaré D, Tome 9 (2022) no. 1, pp. 73-119. doi : 10.4171/aihpd/114. https://numdam.org/articles/10.4171/aihpd/114/
Cité par Sources :