Nous présentons une méthode robuste qui permet de traduire des informations sur la vitesse de descente de l’infini d’un arbre généalogique en formules d’échantillonnages pour la population sous-jacente. Nous appliquons cette méthode au cas où la génélaogie est donnée par un
We present a robust method which translates information on the speed of coming down from infinity of a genealogical tree into sampling formulae for the underlying population. We apply these results to population dynamics where the genealogy is given by a
Mots-clés :
@article{AIHPB_2014__50_3_715_0, author = {Berestycki, Julien and Berestycki, Nathana\"el and Limic, Vlada}, title = {Asymptotic sampling formulae for $\varLambda $-coalescents}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {715--731}, publisher = {Gauthier-Villars}, volume = {50}, number = {3}, year = {2014}, doi = {10.1214/13-AIHP546}, mrnumber = {3224287}, zbl = {06340406}, language = {en}, url = {https://numdam.org/articles/10.1214/13-AIHP546/} }
TY - JOUR AU - Berestycki, Julien AU - Berestycki, Nathanaël AU - Limic, Vlada TI - Asymptotic sampling formulae for $\varLambda $-coalescents JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2014 SP - 715 EP - 731 VL - 50 IS - 3 PB - Gauthier-Villars UR - https://numdam.org/articles/10.1214/13-AIHP546/ DO - 10.1214/13-AIHP546 LA - en ID - AIHPB_2014__50_3_715_0 ER -
%0 Journal Article %A Berestycki, Julien %A Berestycki, Nathanaël %A Limic, Vlada %T Asymptotic sampling formulae for $\varLambda $-coalescents %J Annales de l'I.H.P. Probabilités et statistiques %D 2014 %P 715-731 %V 50 %N 3 %I Gauthier-Villars %U https://numdam.org/articles/10.1214/13-AIHP546/ %R 10.1214/13-AIHP546 %G en %F AIHPB_2014__50_3_715_0
Berestycki, Julien; Berestycki, Nathanaël; Limic, Vlada. Asymptotic sampling formulae for $\varLambda $-coalescents. Annales de l'I.H.P. Probabilités et statistiques, Tome 50 (2014) no. 3, pp. 715-731. doi : 10.1214/13-AIHP546. https://numdam.org/articles/10.1214/13-AIHP546/
[1] Exchangeability and related topics. In École d'Eté de Probabilités de Saint-Flour XIII - 1983. Lecture Notes Math. 1117. Springer, Berlin, 1985. | MR | Zbl
.[2] Asymptotics of the allele frequency spectrum associated with the Bolthausen-Sznitman coalescent. Electron. J. Probab. 13 (2008) 486-512. | MR | Zbl
and .
[3] The
[4] A small-time coupling between
[5] Small-time behavior of beta-coalescents. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2008) 214-238. | Numdam | MR | Zbl
, and .[6] Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007) 1835-1887. | MR | Zbl
, and .[7] Recent Progress in Coalescent Theory. Ensaios Matematicos 16. Sociedade Brasileira de Matemática, Rio de Janeiro, 2009. | MR | Zbl
.[8] Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics. Cambridge Univ. Press, Cambridge, 2006. | MR | Zbl
.[9] Stochastic flows associated to coalescent processes III: Limit theorems. Illinois J. Math. 50 (2006) 147-181. | MR | Zbl
and .[10] On the length of an external branch in the Beta-coalescent, 2012. Available at arXiv:1201.3983. | MR | Zbl
, , and .[11] Particle representations for measure-valued population models. Ann. Probab. 27 (1999) 166-205. | MR | Zbl
and .[12] Probability Models for DNA Sequence Evolution. Springer, Berlin, 2002. | MR
.[13] The sampling theory of selectively neutral alleles. Theor. Pop. Biol. 3 (1972) 87-112. | MR | Zbl
.[14] An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley, New York, 1971. | MR | Zbl
.[15] The number of non-singleton blocks in Lambda-coalescents with dust, 2011. Available at arXiv:1111.1660.
.[16] Notes on the occupancy problem with infinitely many boxes: General asymptotics and power laws. Probab. Surv. 4 (2007) 146-171. | MR | Zbl
, and .[17] The asymptotic distribution of the length of Beta-coalescent trees. Ann. Appl. Probab. 22 (2012) 2086-2107. | MR | Zbl
.[18] The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61 (1969) 893-903.
.[19] On the genealogies of large populations. J. Appl. Probab. 19 (1982) 27-43. | MR | Zbl
.
[20] On the speed of coming down from infinity for
[21] Genealogies of regular exchangeable coalescents with applications to sampling. Ann. Inst. Henri Poincaré Probab. Statist. 48 (2012) 706-720. | Numdam | MR | Zbl
.[22] Processus de Coalescence et Marches Aléatoires Renforcées : Un guide à travers martingales et couplage. Habilitation thesis (in French and English), 2011. Available at http://www.latp.univ-mrs.fr/~vlada/habi.html.
.[23] On the number of segregating sites for populations with large family sizes. Adv. in Appl. Probab. 38 (2006) 750-767. | MR | Zbl
.[24] A classification of coalescent processes for haploid exchangeable population models. Ann Probab. 29 (2001) 1547-1562. | MR | Zbl
and .[25] Coalescents with multiple collisions. Ann. Probab. 27 (1999) 1870-1902. | MR | Zbl
.[26] Combinatorial stochastic processes. In École d'Eté de Probabilités de Saint-Flour XXXII - 2002. Lecture Notes Math. 1875. Springer, Berlin, 2006. | MR | Zbl
.[27] The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 (1999) 1116-1125. | MR | Zbl
.
[28] A necessary and sufficient condition for the
[29] The number of small blocks in exchangeable random partitions. ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010) 217-242. | MR | Zbl
.Cité par Sources :