Ce papier a pour but d'établir un principe d'invariance dont le processus limite est gaussien et multifractionnaire avec une fonction de Hurst à valeurs dans (1/2, 1). Des propriétés telles que la régularité et l'autosimilarité locale de ce processus sont étudiées. De plus, le processus limite est comparé au mouvement brownien multifractionnaire.
This paper is devoted to establish an invariance principle where the limit process is a multifractional gaussian process with a multifractional function which takes its values in (1/2, 1). Some properties, such as regularity and local self-similarity of this process are studied. Moreover the limit process is compared to the multifractional brownian motion.
Mots-clés : invariance principle, long range dependence, multifractional process, gaussian processes
@article{AIHPB_2008__44_3_475_0, author = {Cohen, Serge and Marty, Renaud}, title = {Invariance principle, multifractional gaussian processes and long-range dependence}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {475--489}, publisher = {Gauthier-Villars}, volume = {44}, number = {3}, year = {2008}, doi = {10.1214/07-AIHP127}, mrnumber = {2451054}, zbl = {1176.60021}, language = {en}, url = {https://numdam.org/articles/10.1214/07-AIHP127/} }
TY - JOUR AU - Cohen, Serge AU - Marty, Renaud TI - Invariance principle, multifractional gaussian processes and long-range dependence JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2008 SP - 475 EP - 489 VL - 44 IS - 3 PB - Gauthier-Villars UR - https://numdam.org/articles/10.1214/07-AIHP127/ DO - 10.1214/07-AIHP127 LA - en ID - AIHPB_2008__44_3_475_0 ER -
%0 Journal Article %A Cohen, Serge %A Marty, Renaud %T Invariance principle, multifractional gaussian processes and long-range dependence %J Annales de l'I.H.P. Probabilités et statistiques %D 2008 %P 475-489 %V 44 %N 3 %I Gauthier-Villars %U https://numdam.org/articles/10.1214/07-AIHP127/ %R 10.1214/07-AIHP127 %G en %F AIHPB_2008__44_3_475_0
Cohen, Serge; Marty, Renaud. Invariance principle, multifractional gaussian processes and long-range dependence. Annales de l'I.H.P. Probabilités et statistiques, Tome 44 (2008) no. 3, pp. 475-489. doi : 10.1214/07-AIHP127. https://numdam.org/articles/10.1214/07-AIHP127/
[1] The Geometry of Random Fields. Wiley, London, 1981. | MR | Zbl
.[2] The covariance structure of multifractional Brownian motion, with application to long range dependence, Proceedings of the 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000.
, and .[3] The generalized multifractional Brownian motion. Stat. Inference for Stoch. Process. 3 (2000) 7-18. | MR | Zbl
and .[4] Identifying the multifractional function of a Gaussian process. Statist. Probab. Lett. 39 (1998) 337-345. | MR | Zbl
, and .[5] Identification and properties of real harmonizable Lévy motions. Bernoulli 8 (2002) 97-115. | MR | Zbl
, and .[6] Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | EuDML | MR | Zbl
, and .[7] Convergence of Probability Measures. Wiley, New York, 1968. | MR | Zbl
.[8] From self-similarity to local self-similarity: the estimation problem. In Fractal in Engineering 3-16. J. Lévy-Véhel and C. Tricot (Eds). Springer, London, 1999. | MR | Zbl
.[9] The invariance principle for stationary processes. Theory Probab. Appl. 15 (1970) 487-498. | MR | Zbl
.[10] Fractals: Theory and Applications in Engineering. Springer, London, 1999. | MR | Zbl
, , and .[11] Real Harmonizable multifractional Lévy motions. Ann. Inst. H. Poincaré, Probab. Statist. 40 (2004) 259-277. | Numdam | MR | Zbl
.[12] Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968) 422-437. | MR | Zbl
, .[13] Multifractional Brownian motion: definition and preliminary results. INRIA research report, RR-2645, 1995.
and .[14] Time-varying fractionally integrated processes with nonstationary long memory, Theory Probab. Appl. (2007). To appear. | Zbl
, and .[15] Stable non-Gaussian Random Processes. Chapman and Hall, New York, 1994. | MR | Zbl
and .- Multifractional Hermite processes: Definition and first properties, Stochastic Processes and their Applications, Volume 165 (2023), p. 465 | DOI:10.1016/j.spa.2023.09.003
- Continuity in law with respect to the Hurst index of some additive functionals of sub-fractional Brownian motion, Stochastic Analysis and Applications, Volume 35 (2017) no. 4, p. 677 | DOI:10.1080/07362994.2017.1309979
- From Hermite Polynomials to Multifractional Processes, Journal of Applied Probability, Volume 50 (2013) no. 02, p. 323 | DOI:10.1017/s0021900200013395
- From Hermite Polynomials to Multifractional Processes, Journal of Applied Probability, Volume 50 (2013) no. 2, p. 323 | DOI:10.1239/jap/1371648944
- Multifractional Property Analysis of Human Sleep Electroencephalogram Signals, Fractional Processes and Fractional-Order Signal Processing (2012), p. 243 | DOI:10.1007/978-1-4471-2233-3_13
- Introduction, Fractional Processes and Fractional-Order Signal Processing (2012), p. 3 | DOI:10.1007/978-1-4471-2233-3_1
- MULTIFRACTIONAL PROPERTY ANALYSIS OF HUMAN SLEEP EEG SIGNALS, International Journal of Bifurcation and Chaos, Volume 22 (2012) no. 04, p. 1250080 | DOI:10.1142/s0218127412500800
- HEAVY-TAILED DISTRIBUTION AND LOCAL LONG MEMORY IN TIME SERIES OF MOLECULAR MOTION ON THE CELL MEMBRANE, Fluctuation and Noise Letters, Volume 10 (2011) no. 01, p. 93 | DOI:10.1142/s0219477511000429
- Synthesis of multifractional Gaussian noises based on variable-order fractional operators, Signal Processing, Volume 91 (2011) no. 7, p. 1645 | DOI:10.1016/j.sigpro.2011.01.010
- A general framework for waves in random media with long-range correlations, The Annals of Applied Probability, Volume 21 (2011) no. 1 | DOI:10.1214/10-aap689
- , Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (2010), p. 474 | DOI:10.1109/mesa.2010.5552002
Cité par 11 documents. Sources : Crossref