In this paper, information theoretic methodology for system modeling is applied to investigate the probability density function of the busy period in
@article{RO_2004__38_3_195_0, author = {Artalejo, Jesus R. and Lopez-Herrero, Maria J.}, title = {Entropy maximization and the busy period of some single-server vacation models}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {195--213}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/ro:2004020}, mrnumber = {2091752}, language = {en}, url = {https://numdam.org/articles/10.1051/ro:2004020/} }
TY - JOUR AU - Artalejo, Jesus R. AU - Lopez-Herrero, Maria J. TI - Entropy maximization and the busy period of some single-server vacation models JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2004 SP - 195 EP - 213 VL - 38 IS - 3 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ro:2004020/ DO - 10.1051/ro:2004020 LA - en ID - RO_2004__38_3_195_0 ER -
%0 Journal Article %A Artalejo, Jesus R. %A Lopez-Herrero, Maria J. %T Entropy maximization and the busy period of some single-server vacation models %J RAIRO - Operations Research - Recherche Opérationnelle %D 2004 %P 195-213 %V 38 %N 3 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ro:2004020/ %R 10.1051/ro:2004020 %G en %F RO_2004__38_3_195_0
Artalejo, Jesus R.; Lopez-Herrero, Maria J. Entropy maximization and the busy period of some single-server vacation models. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 3, pp. 195-213. doi : 10.1051/ro:2004020. https://numdam.org/articles/10.1051/ro:2004020/
[1] Numerical inversion of Laplace transforms of probability distributions. ORSA J. Comput. 7 (1995) 36-43. | Zbl
and ,[2] G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. | Zbl
,[3] On the M/G/1 queue with D-policy. Appl. Math. Modelling 25 (2001) 1055-1069. | Zbl
,[4] On the D-policy for the M/G/1 queue. Manage. Sci. 21 (1975) 1073-1076. | Zbl
and ,[5] Basic Optimization Methods. Edward Arnold, London (1984). | Zbl
,[6] Queueing systems with vacations - A survey. Queue. Syst. 1 (1986) 29-66. | Zbl
,[7] A maximum entropy analysis of the M/G/1 and G/M/1 queueing systems at equilibrium. Acta Inform. 19 (1983) 339-355. | Zbl
and ,[8] Information theoretic approximations for the M/G/1 retrial queue. Acta Inform. 31 (1994) 559-571. | Zbl
, and ,[9] Distributions and first moments of the busy period and idle periods in controllable M/G/1 queueing models with simple and dyadic policies. Stoch. Anal. Appl. 13 (1995) 47-81. | Zbl
, and ,[10] Product-form queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 656-663. | Zbl
,[11] G-networks: A unifying model for neural and queueing networks. Ann. Oper. Res. 48 (1994) 433-461. | Zbl
,[12] A queue with server of walking type (autonomous service). Annales de l'Institut Henry Poincaré, Series B 16 (1980) 63-73. | Numdam | Zbl
and ,[13] Maximum entropy condition in queueing theory. J. Opl. Res. Soc. 37 (1986) 293-301. | Zbl
,[14] The T-policy for the M/G/1 queue. Manage. Sci. 23 (1977) 775-778. | Zbl
,[15] Queueing Systems, Volume 1: Theory. John Wiley & Sons, Inc., New York (1975). | Zbl
,[16] Entropy maximisation and queueing networks models. Ann. Oper. Res. 48 (1994) 63-126. | Zbl
,[17] Utilization of idle time in an M/G/1 queueing system. Manage. Sci. 22 (1975) 202-211. | Zbl
and ,[18] A simplex method for function minimization. Comput. J. 7 (1964) 308-313. | Zbl
and ,[19] Numerical Recipes in Fortran, The Art of Scientific Computing. Cambridge University Press (1992). | MR | Zbl
, , and ,[20] Information theoretic approximations for M/G/1 and G/G/1 queuing systems. Acta Inform. 17 (1982) 43-61. | Zbl
,[21] Maximum entropy solution to a quorum queueing system. Math. Comput. Modelling 34 (2001) 19-27. | Zbl
and ,[22] Queueing Analysis. Vol. 1-3, North-Holland, Amsterdam (1991).
,[23] Control of the service process in a queueing system. Eur. J. Oper. Res. 23 (1986) 141-158. | Zbl
,[24] A maximum entropy method for inverting Laplace transforms of probability density functions. Biometrika 82 (1995) 887-892. | Zbl
and ,[25] Maximum entropy analysis to the N policy M/G/1 queueing systems with a removable server. Appl. Math. Modelling 26 (2002) 1151-1162.
, and ,[26] Queueing systems with a removable server station. Oper. Res. Quar. 14 (1963) 393-405.
and ,Cité par Sources :