A single-server queueing system with a batch markovian arrival process (BMAP) and MAP-input of disasters causing all customers to leave the system instantaneously is considered. The system has two operation modes, which depend on the current queue length. The embedded and arbitrary time stationary queue length distribution has been derived and the optimal control threshold strategy has been determined.
@article{RO_2004__38_2_153_0, author = {Semenova, Olga V.}, title = {Optimal control for a {BMAP/SM/1} queue with {MAP-input} of disasters and two operation modes}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {153--171}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/ro:2004017}, mrnumber = {2081835}, zbl = {1092.90018}, language = {en}, url = {https://numdam.org/articles/10.1051/ro:2004017/} }
TY - JOUR AU - Semenova, Olga V. TI - Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2004 SP - 153 EP - 171 VL - 38 IS - 2 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ro:2004017/ DO - 10.1051/ro:2004017 LA - en ID - RO_2004__38_2_153_0 ER -
%0 Journal Article %A Semenova, Olga V. %T Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes %J RAIRO - Operations Research - Recherche Opérationnelle %D 2004 %P 153-171 %V 38 %N 2 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ro:2004017/ %R 10.1051/ro:2004017 %G en %F RO_2004__38_2_153_0
Semenova, Olga V. Optimal control for a BMAP/SM/1 queue with MAP-input of disasters and two operation modes. RAIRO - Operations Research - Recherche Opérationnelle, Tome 38 (2004) no. 2, pp. 153-171. doi : 10.1051/ro:2004017. https://numdam.org/articles/10.1051/ro:2004017/
[1] G-networks: A versatile approach for work removal in queueing networks. Eur. J. Oper. Res. 126 (2000) 233-249. | MR | Zbl
,
[2] The
[3] Optimal control for a
[4] Optimal control for a
[5]
[6] A
[7] Embedded stationary distribution for the
[8] Linear independence of root equations for
[9] Spectral analysis of
[10] Réseaux stochastiques ouverts avec clients négatifs et positifs, et réseaux neuronaux. C. R. Acad. Sci. Paris II 309 (1989) 979-982. | MR
,[11] Random neural networks with positive and negative signals and product form solution. Neural Comput. 1 (1989) 502-510.
,[12] Réseaux neuronaux aléatoires stables. C. R. Acad. Sci. 310 (1990) 177-180. | MR
,[13] Stable random neural networks. Neural Comput. 2 (1990) 239-247. | MR
,[14] Queueing networks with negative and positive customers. J. Appl. Prob. 28 (1991) 655-663. | MR | Zbl
,[15] Queues with negative arrivals. J. Appl. Prob. 28 (1991) 245-250. | MR | Zbl
, and ,
[16] Performances d’un systeme informatique dupliqu
[17] Stability of product form G-networks. Proba Eng. Inform. Sci. 6 (1992) 271-276. | Zbl
and ,[18] G-networks with instantaneous customer movement. J. Appl. Prob. 30 (1993) 742-748. | MR | Zbl
,[19] G-networks with signals and batch removal. Prob. Eng. Inform. Sci. 7 (1993) 335-342.
,[20] G-networks: An unifying model for queueing networks and neural networks. Ann. oper. Res. 48, (1994) 141-156. | MR | Zbl
,[21] G-networks with multiple classes of positive and negative customers. Theoret. Comput. Sci. 155 (1996) 141-156. | MR | Zbl
, and ,[22] G-networks with multiple classes of signal and positive customers. Eur. J. Oper. Res. 108 (1998) 293-305. | Zbl
and ,[23] Kronecker Products and Matrix Calculus with Applications. Ellis Horwood, Chichester, UK (1981). | MR | Zbl
,
[24] The
[25] A Pollaczeck-Khinchine formula for
[26] New results on the single server queue with a batch Markovian arrival processes. Stoch. Mod. 7 (1991) 1-46. | MR | Zbl
,
[27] Some steady-state distributions for the
[28] Structured Stochastic Matrices of
[29] An
[30] A regenerative approach for an
[31] Optimal control for a
[32] Probability Theory and Random Process. High School, Kiev (1980).
,
[33] On the optimality of a switch-over with exponential controlling the queue size in a
Cité par Sources :