Let G = (V, E) be a graph. The function f : V(G) → {−1, 1} is a signed dominating function if for every vertex v ∈ V(G),
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2019109
Mots-clés : Signed domination number, Mycielski construction
@article{RO_2020__54_4_1077_0, author = {Ghameshlou, Arezoo N. and Shaminezhad, Athena and Vatandoost, Ebrahim and Khodkar, Abdollah}, title = {Signed domination and {Mycielski{\textquoteright}s} structure in graphs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1077--1086}, publisher = {EDP-Sciences}, volume = {54}, number = {4}, year = {2020}, doi = {10.1051/ro/2019109}, mrnumber = {4100701}, language = {en}, url = {https://numdam.org/articles/10.1051/ro/2019109/} }
TY - JOUR AU - Ghameshlou, Arezoo N. AU - Shaminezhad, Athena AU - Vatandoost, Ebrahim AU - Khodkar, Abdollah TI - Signed domination and Mycielski’s structure in graphs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2020 SP - 1077 EP - 1086 VL - 54 IS - 4 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ro/2019109/ DO - 10.1051/ro/2019109 LA - en ID - RO_2020__54_4_1077_0 ER -
%0 Journal Article %A Ghameshlou, Arezoo N. %A Shaminezhad, Athena %A Vatandoost, Ebrahim %A Khodkar, Abdollah %T Signed domination and Mycielski’s structure in graphs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2020 %P 1077-1086 %V 54 %N 4 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ro/2019109/ %R 10.1051/ro/2019109 %G en %F RO_2020__54_4_1077_0
Ghameshlou, Arezoo N.; Shaminezhad, Athena; Vatandoost, Ebrahim; Khodkar, Abdollah. Signed domination and Mycielski’s structure in graphs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 4, pp. 1077-1086. doi : 10.1051/ro/2019109. https://numdam.org/articles/10.1051/ro/2019109/
Signed domination in graphs. In, Signed domination in graphs. In: Vol. 1 of Graph Theory, Combinatorics and Applications. John Wiley & Sons, Inc. (1995) 311–322. | MR | Zbl
, , and ,Hamiltonicity, diameter, domination, packing and biclique partitions of Mycielski’s graphs. Discrete Appl. Math. 84 (1998) 93–105. | DOI | MR | Zbl
, and ,Bounds on the signed domination numbers of a graph. Discrete Math. 283 (2004) 87–92. | DOI | MR | Zbl
and ,Domination in Graphs: Advanced Topics. Marcel Deker Inc (1998). | MR | Zbl
, and ,Bondage numbers of Mycielski graphs. Bull. Malays. Math. Soc. 2 (2016) 229–245. | MR
, and ,Roman domination and Mycielski’s structure in graphs. Ars Combin. 106 (2012) 277–287. | MR | Zbl
,On domination and its forcing in Mycielski’s graphs. Sci. Iran. 15 (2008) 218–222. | MR | Zbl
and ,Sur le coloriage des graphes. Colloq. Math. 3 (1955) 161–162. | DOI | MR | Zbl
,Forcing signed domination numbers in graphs. Oplooska 59 (2007) 171–179. | MR | Zbl
,Lower bounds of signed domination number of a graph. Bull. Korean Math. Soc. 41 (2004) 181–188. | DOI | MR | Zbl
, and ,Introduction to Graph Theory. Prentice-Hall (2000). | MR | Zbl
,Signed and minus domination in bipartite graphs. Czeckoslovak Math. J. 56 (2006) 587–590. | DOI | MR | Zbl
,Cité par Sources :