Many statistical applications require establishing central limit theorems for sums/integrals
Mots-clés : quadratic forms, Appell polynomials, Hölder-Young inequality, Szegö type limit theorem, asymptotic normality, minimum contrast estimation
@article{PS_2010__14__210_0, author = {Avram, Florin and Leonenko, Nikolai and Sakhno, Ludmila}, title = {On a {Szeg\"o} type limit theorem, the {H\"older-Young-Brascamp-Lieb} inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields}, journal = {ESAIM: Probability and Statistics}, pages = {210--255}, publisher = {EDP-Sciences}, volume = {14}, year = {2010}, doi = {10.1051/ps:2008031}, mrnumber = {2741966}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2008031/} }
TY - JOUR AU - Avram, Florin AU - Leonenko, Nikolai AU - Sakhno, Ludmila TI - On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields JO - ESAIM: Probability and Statistics PY - 2010 SP - 210 EP - 255 VL - 14 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ps:2008031/ DO - 10.1051/ps:2008031 LA - en ID - PS_2010__14__210_0 ER -
%0 Journal Article %A Avram, Florin %A Leonenko, Nikolai %A Sakhno, Ludmila %T On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields %J ESAIM: Probability and Statistics %D 2010 %P 210-255 %V 14 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ps:2008031/ %R 10.1051/ps:2008031 %G en %F PS_2010__14__210_0
Avram, Florin; Leonenko, Nikolai; Sakhno, Ludmila. On a Szegö type limit theorem, the Hölder-Young-Brascamp-Lieb inequality, and the asymptotic theory of integrals and quadratic forms of stationary fields. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 210-255. doi : 10.1051/ps:2008031. https://numdam.org/articles/10.1051/ps:2008031/
[1] Exponential sums with coefficients 0 or 1 and concentrated Lp norms. Ann. Inst. Fourier 57 (2007) 1377-1404. | Numdam | Zbl
, , , and ,[2] Spectral analysis of fractional kinetic equations with random data. J. Statist. Phys. 104 (2001) 1349-1387. | Zbl
and ,[3] Renormalization and homogenization of fractional diffusion equations with random data. Probab. Theory Relat. Fields 124 (2002) 381-408. | Zbl
and ,[4] Possible long-range dependence in fractional random fields. J. Statist. Plann. Infer. 80 (1999) 95-110. | Zbl
, and ,[5] Dynamic models of long-memory processes driven by Lévy noise. J. Appl. Probab. 39 (2002) 730-747. | Zbl
, and ,[6] Models for fractional Riesz-Bessel motion and related processes. Fractals 9 (2001) 329-346.
, and ,[7] Higher-order spectral densities of fractional random fields. J. Stat. Phys. 111 (2003) 789-814. | Zbl
, and ,[8] Quasi-likelihood-based higher-order spectral estimation of random fields with possible long-range dependence. Stochastic Methods and their Applications. J. Appl. Probab. A 41 (2004) 35-53. | Zbl
, and ,[9] On a class of minimum contrast estimators. J. Statist. Plann. Infer. 123 (2004) 161-185. | Zbl
, and ,[10] On Bilinear Forms in Gaussian Random Variables and Toeplitz Matrices. Probab. Theory Relat. Fields 79 (1988) 37-45. | Zbl
,[11] Generalized Szegö Theorems and asymptotics of cumulants by graphical methods. Trans. Amer. Math. Soc. 330 (1992) 637-649. | Zbl
,[12] A Generalized Hölder Inequality and a Generalized Szegö Theorem. Proc. Amer. Math. Soc. 107 (1989) 687-695. | Zbl
and ,[13] Central limit theorems for sums of Wick products of stationary sequences. Trans. Amer. Math. Soc. 330 (1992) 651-663. | Zbl
and ,[14] Noncentral limit theorems and Appell polynomials. Ann. Probab. 15 (1987) 767-775. | Zbl
and ,[15] Hölder's Inequality for Functions of Linearly Dependent Arguments. SIAM J. Math. Anal. 20 (1989) 1484-1489. | Zbl
and ,[16] On a Szegö type limit theorem and the asymptotic theory of random sums, integrals and quadratic forms. Dependence in probability and statistics, Lect. Notes Statist. 187. Springer, New York (2006) 259-286. | Zbl
and ,[17] Volume ratios and a reverse isoperimetric inequality. J. London Math. Soc. 44 (1991) 351-359. | Zbl
,[18] On a reverse form of the Brascamp-Lieb inequality. Inventiones Mathematicae 134 (2005) 335-361. | Zbl
,[19] The Brascamp-Lieb inequalities: finiteness, structure and extremals, Geom. Funct. Anal. 17 (2008) 1343-1415. | Zbl
, , and ,[20] On the error of the estimate of the spectral function of a stationary process. Lietuvos Matematikos Rinkinys 12 (1972) 55-71 (In Russian). | Zbl
,[21] On the asymptotics of the first two moments of second order spectral estimators. Liet. Mat. Rink. 13 (1973) 29-45. | Zbl
, and ,[22] Statistics for Long-Memory Processes. Chapman & Hall, New York (1994). | Zbl
,[23] Best constants in Young's inequality, its converse, and its generalization to more than three functions. Adv. Math. 20 (1976) 151-173. | Zbl
and ,[24] Central limit theorems for nonlinear functionals of Gaussian fields. J. Multiv. Anal. 13 (1983) 425-441. | Zbl
and ,[25] Representations of continuous-time ARMA processes. Stochastic Methods and their Applications. J. Appl. Probab. A 41 (2004) 375-382. | Zbl
,[26] A sharp analog of Young's inequality on Sn and related entropy inequalities. J. Geom. Anal. 14 (2004) 487-520. | Zbl
, and ,[27] Non-central limit theorems for non-linear functions of Gaussian fields. Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979) 27-52. | Zbl
and ,[28] Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series. Ann. Statist. 14 (1986) 517-532. | Zbl
and ,[29] Central limit theorems for quadratic forms in random variables having long-range dependence. Probab. Theory Relat. Fields 74 (1987) 213-240. | Zbl
and ,[30] Hypergraphs, entropy, and inequalities. Amer. Math. Monthly 111 (2004) 749-760. | Zbl
,[31] Statistical estimation of nonstationary Gaussian process with long-range dependence and intermittency. Stoch. Process. Appl. 99 (2002) 295-321. | Zbl
, and ,[32] On a class of random field models which allows long range dependence. Biometrika 77 (1990) 401-403. | Zbl
and ,[33] On Toeplitz type quadratic functionals of stationary Gaussian processes. Probab. Theory Relat. Fields 100 (1994) 395-406. | Zbl
,[34] Limit theorems for Toeplitz quadratic functionals of continuous-time stationary processes. Probab. Theory Relat. Fields 138 (2007) 551-579. | Zbl
and ,[35] Central limit theorem for functionals of linear processes. Lithuanian Math. J. 25 (1985) 43-57. | Zbl
,[36] Multivariate Appell polynomials and the central limit theorem, in Dependence in Probability and Statistics. Edited by E. Eberlein and M.S. Taqqu. Birkhäuser, New York (1986) 21-71. | Zbl
and ,[37] A central limit theorem for quadratic forms in strongly dependent linear variables and its application to asymptotic normality of Whittle estimate. Probab. Theory Relat. Fields 86 (1990) 87-104. | Zbl
and ,[38] Limit theorems for bivariate Appell polynomials, Part 1: Central limit theorems. Probab. Theory Relat. Fields 107 (1997) 359-381. | Zbl
and ,[39] Whittle estimator for finite variance non-Gaussian time series with long memory. Ann. Statist. 27 (1999) 178-203. | Zbl
and ,[40] An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 10 (1990) 233- 257. | Zbl
and ,[41] Toeplitz forms and their applications. University of California Press, Berkeley (1958). | Zbl
and ,[42] Quasi-Likelihood And Its Applications: A General Approach to Optimal Parameter Estimation. Springer-Verlag, New York (1997). | Zbl
,[43] On asymptotic quasi-likelihood. Stoch. Process. Appl. 31 (1989) 223-236. | Zbl
and ,[44] Smoothed periodogram asymptotics and estimation for processes and fields with possible long-range dependence. Stoch.c Process. Appl. 45 (1993) 169-182. | Zbl
and ,[45] Fractional differencing. Biometrika 68 (1981) 165-176. | Zbl
,[46] Long-term storage capacity of reservoirs. Trans. Amer. Soc. Civil Eng. 116 (1951) 770-808.
,[47] On estimation of the spectral function of a stationary Gaussian process. Theory Probab. Appl. 8 (1963) 391-430. | Zbl
,[48] On maximum likelihood estimation of parameters of the spectral density of stationary time series. Theory Probab. Appl. 12 (1967) 115-119. | Zbl
,[49] Statistical Analysis of Random Processes. Kluwer Academic Publisher, Dordrecht (1989).
and ,[50] Fractional random fields associated with stochastic fractional heat equation. Adv. Appl. Probab. 37 (2005) 108-133. | Zbl
, and ,[51] Random Series and Stochastic Integrals: Single and Multiple. Birkhaäser, Boston (1992). | Zbl
and ,[52] On the Whittle estimators for some classes of continuous parameter random processes and fields. Stat. Probab. Lett. 76 (2006) 781-795. | Zbl
and ,[53] Gaussian kernels have only Gaussian maximizers. Invent. Math. 102 (1990) 179-208. | Zbl
,[54] Cluster expansions in lattice models of statistical physics and the quantum theory of fields. Russ. Math. Surveys 35 (1980) 1-62.
,[55] Formal power series. Amer. Math. Monthly 76 (1969) 871-889. | Zbl
,[56] Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005) 177-193. | Zbl
and ,[57] Matroid Theory. Oxford University Press, New York (1992). | Zbl
,[58] Gaussian limits for vector-valued multiple stochastic integrals. Séminaire de Probabilités XXXVIII. Lect. Notes Math. 1857 247-262. Springer-Verlag, Berlin (2004). | Zbl
and ,[59] Classical Harmonic Analysis and Locally Compact Groups. Oxford University Press, USA (2000). | Zbl
and ,[60] Real and Comlex Analysis. McGraw-Hill, London, New York (1970). | Zbl
,[61] Functional Analysis. McGraw-Hill, London, New York (1991). | Zbl
,[62] Stable Non-Gaussian Random Processes. Chapman and Hall, New York (1994). | Zbl
and ,[63] A sufficient condition for asymptotic normality of the normalized quadratic form Ψn(f,g). C. R. Acad. Sci. Paris, Ser. I 342 (2006) 971-975. | Zbl
and ,[64] Enumerative combinatorics. Cambridge University Press (1997). | Zbl
,[65] Singular Integrals and Differential Properties of Functions. Princeton University Press (1970). | Zbl
,[66] Grobner bases and convex polytopes. Volume 8 of University lecture Series. AMS, Providence, RI (1996). | Zbl
,[67] On Poisson multiple stochastic integral and associated Markov semigroups. Probab. Math. Statist. 3 (1984) 217-239. | Zbl
,[68] Long-range dependence and Appel rank, Ann. Probab. 28 (2000) 478-497. | Zbl
,[69] Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitstheorie Verw. Geb. 50 (1979) 53-83. | Zbl
,[70] Matroids and graphs. Trans. Amer. Math. Soc. 90 (1959) 527-552. | Zbl
,[71] Matroid Theory. Academic Press, London (1976). | Zbl
,[72] Stock market prices and long-range dependence. Finance and Stochastics 3 (1999) 1-13. | Zbl
, and ,[73] Hypothesis Testing in Time Series. Hafner, New York (1951).
,[74] Estimation and information in stationary time series. Ark. Mat. 2 (1953) 423-434. | Zbl
,[75] Trigonometric Series. Volumes I and II. Third edition. Cambridge University Press (2002). | Zbl
,Cité par Sources :