Deviation bounds for additive functionals of Markov processes
ESAIM: Probability and Statistics, Tome 12 (2008), pp. 12-29.

In this paper we derive non asymptotic deviation bounds for

ν(|1t0tV(Xs)ds-Vdμ|R)
where X is a μ stationary and ergodic Markov process and V is some μ integrable function. These bounds are obtained under various moments assumptions for V, and various regularity assumptions for μ. Regularity means here that μ may satisfy various functional inequalities (F-Sobolev, generalized Poincaré etc.).

DOI : 10.1051/ps:2007032
Classification : 60F10, 60J25
Mots-clés : deviation inequalities, functional inequalities, additive functionals
@article{PS_2008__12__12_0,
     author = {Cattiaux, Patrick and Guillin, Arnaud},
     title = {Deviation bounds for additive functionals of {Markov} processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {12--29},
     publisher = {EDP-Sciences},
     volume = {12},
     year = {2008},
     doi = {10.1051/ps:2007032},
     mrnumber = {2367991},
     language = {en},
     url = {https://numdam.org/articles/10.1051/ps:2007032/}
}
TY  - JOUR
AU  - Cattiaux, Patrick
AU  - Guillin, Arnaud
TI  - Deviation bounds for additive functionals of Markov processes
JO  - ESAIM: Probability and Statistics
PY  - 2008
SP  - 12
EP  - 29
VL  - 12
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/ps:2007032/
DO  - 10.1051/ps:2007032
LA  - en
ID  - PS_2008__12__12_0
ER  - 
%0 Journal Article
%A Cattiaux, Patrick
%A Guillin, Arnaud
%T Deviation bounds for additive functionals of Markov processes
%J ESAIM: Probability and Statistics
%D 2008
%P 12-29
%V 12
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/ps:2007032/
%R 10.1051/ps:2007032
%G en
%F PS_2008__12__12_0
Cattiaux, Patrick; Guillin, Arnaud. Deviation bounds for additive functionals of Markov processes. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 12-29. doi : 10.1051/ps:2007032. https://numdam.org/articles/10.1051/ps:2007032/

[1] S. Aida, Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal. 158 (1998) 152-185. | MR | Zbl

[2] D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on Probability theory. École d'été de Probabilités de St-Flour 1992, Lect. Notes Math. 1581 (1994) 1-114. | MR | Zbl

[3] F. Barthe, P. Cattiaux and C. Roberto, Concentration for independent random variables with heavy tails. AMRX 2005 (2005) 39-60. | MR | Zbl

[4] F. Barthe, P. Cattiaux and C. Roberto, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iber. 22 (2006) 993-1067. | MR | Zbl

[5] F. Barthe, P. Cattiaux and C. Roberto, Isoperimetry between exponential and Gaussian. EJP 12 (2007) 1212-1237. | MR | Zbl

[6] W. Bryc and A. Dembo, Large deviations for quadratic functionals of gaussian processes. J. Theoret. Prob. 10 (1997) 307-332. | MR | Zbl

[7] P. Cattiaux, I. Gentil and G. Guillin, Weak logarithmic-Sobolev inequalities and entropic convergence. Prob. Theory Related Fields 139 (2007) 563-603. | MR | Zbl

[8] E.B. Davies, Heat kernels and spectral theory. Cambridge University Press (1989). | MR | Zbl

[9] J.D. Deuschel and D.W. Stroock, Large Deviations. Academic Press, London, Pure Appl. Math. 137 (1989). | MR | Zbl

[10] H. Djellout, A. Guillin and L. Wu, Transportation cost information inequalities for random dynamical systems and diffusions. Ann. Prob. 334 (2002) 1025-1028. | Zbl

[11] P. Doukhan, Mixing, Properties and Examples. Springer-Verlag, Lect. Notes Statist. 85 (1994). | MR | Zbl

[12] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. T.A.M.S. 327 (1991) 125-158. | MR | Zbl

[13] F.Z. Gong and F.Y. Wang, Functional inequalities for uniformly integrable semigroups and applications to essential spectrums. Forum Math. 14 (2002) 293-313. | MR

[14] C. Léonard, Convex conjugates of integral functionals. Acta Math. Hungar. 93 (2001) 253-280. | MR | Zbl

[15] C. Léonard, Minimizers of energy functionals. Acta Math. Hungar. 93 (2001) 281-325. | MR | Zbl

[16] P. Lezaud, Chernoff and Berry-Eessen inequalities for Markov processes. ESAIM Probab. Statist. 5 (2001) 183-201. | Numdam | MR | Zbl

[17] G. Lu, Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. Rev. Mat. Iber. 8 (1992) 367-439. | MR | Zbl

[18] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer-Verlag, Math. Appl. 31 (2000). | MR | Zbl

[19] R.T. Rockafellar, Integrals which are convex functionals. Pacific J. Math. 24 (1968) 525-539. | MR | Zbl

[20] R.T. Rockafellar, Integrals which are convex functionals II. Pacific J. Math. 39 (1971) 439-469. | MR | Zbl

[21] M. Röckner and F.Y. Wang, Weak Poincaré inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR | Zbl

[22] G. Royer, Une initiation aux inégalités de Sobolev logarithmiques. S.M.F., Paris (1999). | MR | Zbl

[23] F.Y. Wang, Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219-245. | MR | Zbl

[24] L. Wu, A deviation inequality for non-reversible Markov process. Ann. Inst. Henri Poincaré. Prob. Stat. 36 (2000) 435-445. | Numdam | MR | Zbl

  • Dexheimer, Niklas; Strauch, Claudia On Lasso and Slope drift estimators for Lévy-driven Ornstein–Uhlenbeck processes, Bernoulli, Volume 30 (2024) no. 1 | DOI:10.3150/22-bej1574
  • Monmarché, Pierre Wasserstein contraction and Poincaré inequalities for elliptic diffusions with high diffusivity, Annales Henri Lebesgue, Volume 6 (2023), p. 941 | DOI:10.5802/ahl.182
  • Monmarché, Pierre L 2 hypocoercivity, deviation bounds, hitting times and Lyapunov functions, Annales mathématiques Blaise Pascal, Volume 29 (2023) no. 2, p. 295 | DOI:10.5802/ambp.414
  • Cerf, Raphaël A martingale minimax exponential inequality for Markov chains, Proceedings of the American Mathematical Society (2023) | DOI:10.1090/proc/16468
  • Dexheimer, Niklas; Strauch, Claudia; Trottner, Lukas Adaptive invariant density estimation for continuous-time mixing Markov processes under sup-norm risk, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 58 (2022) no. 4 | DOI:10.1214/21-aihp1235
  • Cattiaux, Patrick; Fathi, Max; Guillin, Arnaud Self-improvement of the Bakry-Emery criterion for Poincaré inequalities and Wasserstein contraction using variable curvature bounds, Journal de Mathématiques Pures et Appliquées, Volume 166 (2022), p. 1 | DOI:10.1016/j.matpur.2022.07.003
  • Menz, Georg; Schlichting, André; Tang, Wenpin; Wu, Tianqi Ergodicity of the infinite swapping algorithm at low temperature, Stochastic Processes and their Applications, Volume 151 (2022), p. 519 | DOI:10.1016/j.spa.2022.06.015
  • Aeckerle-Willems, Cathrine; Strauch, Claudia Concentration of scalar ergodic diffusions and some statistical implications, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 57 (2021) no. 4 | DOI:10.1214/20-aihp1144
  • Bezborodov, Viktor; Di Persio, Luca; Krueger, Tyll A Shape Theorem for a One-Dimensional Growing Particle System with a Bounded Number of Occupants per Site, Journal of Theoretical Probability, Volume 34 (2021) no. 4, p. 2265 | DOI:10.1007/s10959-020-01032-x
  • Pepin, Bob Concentration inequalities for additive functionals: A martingale approach, Stochastic Processes and their Applications, Volume 135 (2021), p. 103 | DOI:10.1016/j.spa.2021.01.004
  • Birrell, Jeremiah; Rey-Bellet, Luc Uncertainty Quantification for Markov Processes via Variational Principles and Functional Inequalities, SIAM/ASA Journal on Uncertainty Quantification, Volume 8 (2020) no. 2, p. 539 | DOI:10.1137/19m1237429
  • Gaïffas, Stéphane; Matulewicz, Gustaw Sparse inference of the drift of a high-dimensional Ornstein–Uhlenbeck process, Journal of Multivariate Analysis, Volume 169 (2019), p. 1 | DOI:10.1016/j.jmva.2018.08.005
  • Boissard, Emmnuel; Cattiaux, Patrick; Guillin, Arnaud; Miclo, Laurent Ornstein-Uhlenbeck Pinball and the Poincaré Inequality in a Punctured Domain, Séminaire de Probabilités XLIX, Volume 2215 (2018), p. 1 | DOI:10.1007/978-3-319-92420-5_1
  • Strauch, Claudia Adaptive invariant density estimation for ergodic diffusions over anisotropic classes, The Annals of Statistics, Volume 46 (2018) no. 6B | DOI:10.1214/17-aos1664
  • Cattiaux, Patrick; Guillin, Arnaud Hitting times, functional inequalities, Lyapunov conditions and uniform ergodicity, Journal of Functional Analysis, Volume 272 (2017) no. 6, p. 2361 | DOI:10.1016/j.jfa.2016.10.003
  • Sanders, Jaron; Borst, Sem C.; van Leeuwaarden, Johan S. H. Online Network Optimization Using Product-Form Markov Processes, IEEE Transactions on Automatic Control, Volume 61 (2016) no. 7, p. 1838 | DOI:10.1109/tac.2015.2482961
  • Atchadé, Yves; Wang, Yizao On the convergence rates of some adaptive Markov chain Monte Carlo algorithms, Journal of Applied Probability, Volume 52 (2015) no. 03, p. 811 | DOI:10.1017/s0021900200113452
  • Atchadé, Yves; Wang, Yizao On the convergence rates of some adaptive Markov chain Monte Carlo algorithms, Journal of Applied Probability, Volume 52 (2015) no. 3, p. 811 | DOI:10.1239/jap/1445543848
  • Löcherbach, Eva; Loukianov, Oleg; Loukianova, Dasha Spectral condition, hitting times and Nash inequality, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 50 (2014) no. 4 | DOI:10.1214/13-aihp560
  • Gao, F.; Guillin, A.; Wu, L. Bernstein-type Concentration Inequalities for Symmetric Markov Processes, Theory of Probability Its Applications, Volume 58 (2014) no. 3, p. 358 | DOI:10.1137/s0040585x97986667
  • Cattiaux, Patrick; Guillin, Arnaud; Zitt, Pierre André Poincaré inequalities and hitting times, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 49 (2013) no. 1 | DOI:10.1214/11-aihp447
  • Joulin, Aldéric; Guillin, Arnaud Measure concentration through non-Lipschitz observables and functional inequalities, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2425
  • Galtchouk, L.; Pergamenshchikov, S. Uniform concentration inequality for ergodic diffusion processes observed at discrete times, Stochastic Processes and their Applications, Volume 123 (2013) no. 1, p. 91 | DOI:10.1016/j.spa.2012.09.004
  • Gao, F; Gao, F; Guillin, Arnaud; Guillin, Arnaud; Wu, L; Wu, L Bernstein type’s concentration inequalities for symmetric Markov processes, Теория вероятностей и ее применения, Volume 58 (2013) no. 3, p. 521 | DOI:10.4213/tvp4524
  • Sanders, Jaron; Borst, Sem C.; van Leeuwaarden, Johan S.H., 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2012), p. 928 | DOI:10.1109/allerton.2012.6483318
  • Kleptsyn, Victor; Kurtzmann, Aline Ergodicity of self-attracting motion, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-2121
  • Löcherbach, Eva; Loukianova, Dasha; Loukianov, Oleg Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 47 (2011) no. 2 | DOI:10.1214/10-aihp359
  • Joulin, Aldéric; Ollivier, Yann Curvature, concentration and error estimates for Markov chain Monte Carlo, The Annals of Probability, Volume 38 (2010) no. 6 | DOI:10.1214/10-aop541
  • Cattiaux, Patrick; Guillin, Arnaud Trends to equilibrium in total variation distance, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 45 (2009) no. 1 | DOI:10.1214/07-aihp152
  • Joulin, Aldéric A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature, Bernoulli, Volume 15 (2009) no. 2 | DOI:10.3150/08-bej158
  • Gao, Fuqing; Jiang, Hui Deviation inequalities and moderate deviations for estimators of parameters in an Ornstein-Uhlenbeck process with linear drift, Electronic Communications in Probability, Volume 14 (2009) no. none | DOI:10.1214/ecp.v14-1466
  • Guillin, Arnaud; Léonard, Christian; Wu, Liming; Yao, Nian Transportation-information inequalities for Markov processes, Probability Theory and Related Fields, Volume 144 (2009) no. 3-4, p. 669 | DOI:10.1007/s00440-008-0159-5
  • Wu, Liming; Yao, Nian Large deviation principles for Markov processes via Phi-Sobolev inequalities, Electronic Communications in Probability, Volume 13 (2008) no. none | DOI:10.1214/ecp.v13-1342
  • Cattiaux, P.; Gentil, I.; Guillin, A. Weak logarithmic Sobolev inequalities and entropic convergence, Probability Theory and Related Fields, Volume 139 (2007) no. 3-4, p. 563 | DOI:10.1007/s00440-007-0054-5

Cité par 34 documents. Sources : Crossref