In this paper we derive non asymptotic deviation bounds for
Mots-clés : deviation inequalities, functional inequalities, additive functionals
@article{PS_2008__12__12_0, author = {Cattiaux, Patrick and Guillin, Arnaud}, title = {Deviation bounds for additive functionals of {Markov} processes}, journal = {ESAIM: Probability and Statistics}, pages = {12--29}, publisher = {EDP-Sciences}, volume = {12}, year = {2008}, doi = {10.1051/ps:2007032}, mrnumber = {2367991}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2007032/} }
TY - JOUR AU - Cattiaux, Patrick AU - Guillin, Arnaud TI - Deviation bounds for additive functionals of Markov processes JO - ESAIM: Probability and Statistics PY - 2008 SP - 12 EP - 29 VL - 12 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ps:2007032/ DO - 10.1051/ps:2007032 LA - en ID - PS_2008__12__12_0 ER -
Cattiaux, Patrick; Guillin, Arnaud. Deviation bounds for additive functionals of Markov processes. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 12-29. doi : 10.1051/ps:2007032. https://numdam.org/articles/10.1051/ps:2007032/
[1] Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal. 158 (1998) 152-185. | MR | Zbl
,[2] L'hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on Probability theory. École d'été de Probabilités de St-Flour 1992, Lect. Notes Math. 1581 (1994) 1-114. | MR | Zbl
,[3] Concentration for independent random variables with heavy tails. AMRX 2005 (2005) 39-60. | MR | Zbl
, and ,[4] Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iber. 22 (2006) 993-1067. | MR | Zbl
, and ,[5] Isoperimetry between exponential and Gaussian. EJP 12 (2007) 1212-1237. | MR | Zbl
, and ,[6] Large deviations for quadratic functionals of gaussian processes. J. Theoret. Prob. 10 (1997) 307-332. | MR | Zbl
and ,[7] Weak logarithmic-Sobolev inequalities and entropic convergence. Prob. Theory Related Fields 139 (2007) 563-603. | MR | Zbl
, and ,[8] Heat kernels and spectral theory. Cambridge University Press (1989). | MR | Zbl
,[9] Large Deviations. Academic Press, London, Pure Appl. Math. 137 (1989). | MR | Zbl
and ,[10] Transportation cost information inequalities for random dynamical systems and diffusions. Ann. Prob. 334 (2002) 1025-1028. | Zbl
, and ,[11] Mixing, Properties and Examples. Springer-Verlag, Lect. Notes Statist. 85 (1994). | MR | Zbl
,[12] Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. T.A.M.S. 327 (1991) 125-158. | MR | Zbl
,[13] Functional inequalities for uniformly integrable semigroups and applications to essential spectrums. Forum Math. 14 (2002) 293-313. | MR
and ,[14] Convex conjugates of integral functionals. Acta Math. Hungar. 93 (2001) 253-280. | MR | Zbl
,[15] Minimizers of energy functionals. Acta Math. Hungar. 93 (2001) 281-325. | MR | Zbl
,[16] Chernoff and Berry-Eessen inequalities for Markov processes. ESAIM Probab. Statist. 5 (2001) 183-201. | Numdam | MR | Zbl
,[17] Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. Rev. Mat. Iber. 8 (1992) 367-439. | MR | Zbl
,[18] Théorie asymptotique des processus aléatoires faiblement dépendants. Springer-Verlag, Math. Appl. 31 (2000). | MR | Zbl
,[19] Integrals which are convex functionals. Pacific J. Math. 24 (1968) 525-539. | MR | Zbl
,[20] Integrals which are convex functionals II. Pacific J. Math. 39 (1971) 439-469. | MR | Zbl
,
[21] Weak Poincaré inequalities and
[22] Une initiation aux inégalités de Sobolev logarithmiques. S.M.F., Paris (1999). | MR | Zbl
,[23] Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219-245. | MR | Zbl
,[24] A deviation inequality for non-reversible Markov process. Ann. Inst. Henri Poincaré. Prob. Stat. 36 (2000) 435-445. | Numdam | MR | Zbl
,- On Lasso and Slope drift estimators for Lévy-driven Ornstein–Uhlenbeck processes, Bernoulli, Volume 30 (2024) no. 1 | DOI:10.3150/22-bej1574
- Wasserstein contraction and Poincaré inequalities for elliptic diffusions with high diffusivity, Annales Henri Lebesgue, Volume 6 (2023), p. 941 | DOI:10.5802/ahl.182
- L 2 hypocoercivity, deviation bounds, hitting times and Lyapunov functions, Annales mathématiques Blaise Pascal, Volume 29 (2023) no. 2, p. 295 | DOI:10.5802/ambp.414
- A martingale minimax exponential inequality for Markov chains, Proceedings of the American Mathematical Society (2023) | DOI:10.1090/proc/16468
- Adaptive invariant density estimation for continuous-time mixing Markov processes under sup-norm risk, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 58 (2022) no. 4 | DOI:10.1214/21-aihp1235
- Self-improvement of the Bakry-Emery criterion for Poincaré inequalities and Wasserstein contraction using variable curvature bounds, Journal de Mathématiques Pures et Appliquées, Volume 166 (2022), p. 1 | DOI:10.1016/j.matpur.2022.07.003
- Ergodicity of the infinite swapping algorithm at low temperature, Stochastic Processes and their Applications, Volume 151 (2022), p. 519 | DOI:10.1016/j.spa.2022.06.015
- Concentration of scalar ergodic diffusions and some statistical implications, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 57 (2021) no. 4 | DOI:10.1214/20-aihp1144
- A Shape Theorem for a One-Dimensional Growing Particle System with a Bounded Number of Occupants per Site, Journal of Theoretical Probability, Volume 34 (2021) no. 4, p. 2265 | DOI:10.1007/s10959-020-01032-x
- Concentration inequalities for additive functionals: A martingale approach, Stochastic Processes and their Applications, Volume 135 (2021), p. 103 | DOI:10.1016/j.spa.2021.01.004
- Uncertainty Quantification for Markov Processes via Variational Principles and Functional Inequalities, SIAM/ASA Journal on Uncertainty Quantification, Volume 8 (2020) no. 2, p. 539 | DOI:10.1137/19m1237429
- Sparse inference of the drift of a high-dimensional Ornstein–Uhlenbeck process, Journal of Multivariate Analysis, Volume 169 (2019), p. 1 | DOI:10.1016/j.jmva.2018.08.005
- Ornstein-Uhlenbeck Pinball and the Poincaré Inequality in a Punctured Domain, Séminaire de Probabilités XLIX, Volume 2215 (2018), p. 1 | DOI:10.1007/978-3-319-92420-5_1
- Adaptive invariant density estimation for ergodic diffusions over anisotropic classes, The Annals of Statistics, Volume 46 (2018) no. 6B | DOI:10.1214/17-aos1664
- Hitting times, functional inequalities, Lyapunov conditions and uniform ergodicity, Journal of Functional Analysis, Volume 272 (2017) no. 6, p. 2361 | DOI:10.1016/j.jfa.2016.10.003
- Online Network Optimization Using Product-Form Markov Processes, IEEE Transactions on Automatic Control, Volume 61 (2016) no. 7, p. 1838 | DOI:10.1109/tac.2015.2482961
- On the convergence rates of some adaptive Markov chain Monte Carlo algorithms, Journal of Applied Probability, Volume 52 (2015) no. 03, p. 811 | DOI:10.1017/s0021900200113452
- On the convergence rates of some adaptive Markov chain Monte Carlo algorithms, Journal of Applied Probability, Volume 52 (2015) no. 3, p. 811 | DOI:10.1239/jap/1445543848
- Spectral condition, hitting times and Nash inequality, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 50 (2014) no. 4 | DOI:10.1214/13-aihp560
- Bernstein-type Concentration Inequalities for Symmetric Markov Processes, Theory of Probability Its Applications, Volume 58 (2014) no. 3, p. 358 | DOI:10.1137/s0040585x97986667
- Poincaré inequalities and hitting times, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 49 (2013) no. 1 | DOI:10.1214/11-aihp447
- Measure concentration through non-Lipschitz observables and functional inequalities, Electronic Journal of Probability, Volume 18 (2013) no. none | DOI:10.1214/ejp.v18-2425
- Uniform concentration inequality for ergodic diffusion processes observed at discrete times, Stochastic Processes and their Applications, Volume 123 (2013) no. 1, p. 91 | DOI:10.1016/j.spa.2012.09.004
- Bernstein type’s concentration inequalities for symmetric Markov processes, Теория вероятностей и ее применения, Volume 58 (2013) no. 3, p. 521 | DOI:10.4213/tvp4524
- , 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton) (2012), p. 928 | DOI:10.1109/allerton.2012.6483318
- Ergodicity of self-attracting motion, Electronic Journal of Probability, Volume 17 (2012) no. none | DOI:10.1214/ejp.v17-2121
- Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 47 (2011) no. 2 | DOI:10.1214/10-aihp359
- Curvature, concentration and error estimates for Markov chain Monte Carlo, The Annals of Probability, Volume 38 (2010) no. 6 | DOI:10.1214/10-aop541
- Trends to equilibrium in total variation distance, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 45 (2009) no. 1 | DOI:10.1214/07-aihp152
- A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature, Bernoulli, Volume 15 (2009) no. 2 | DOI:10.3150/08-bej158
- Deviation inequalities and moderate deviations for estimators of parameters in an Ornstein-Uhlenbeck process with linear drift, Electronic Communications in Probability, Volume 14 (2009) no. none | DOI:10.1214/ecp.v14-1466
- Transportation-information inequalities for Markov processes, Probability Theory and Related Fields, Volume 144 (2009) no. 3-4, p. 669 | DOI:10.1007/s00440-008-0159-5
- Large deviation principles for Markov processes via Phi-Sobolev inequalities, Electronic Communications in Probability, Volume 13 (2008) no. none | DOI:10.1214/ecp.v13-1342
- Weak logarithmic Sobolev inequalities and entropic convergence, Probability Theory and Related Fields, Volume 139 (2007) no. 3-4, p. 563 | DOI:10.1007/s00440-007-0054-5
Cité par 34 documents. Sources : Crossref