Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence
ESAIM: Probability and Statistics, Tome 12 (2008), pp. 1-11.

We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|α, α[1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.

DOI : 10.1051/ps:2007030
Classification : 65C30, 60H35, 65C20
Mots-clés : discretization scheme, strong convergence, CIR process
@article{PS_2008__12__1_0,
     author = {Berkaoui, Abdel and Bossy, Mireille and Diop, Awa},
     title = {Euler scheme for {SDEs} with {non-Lipschitz} diffusion coefficient : strong convergence},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--11},
     publisher = {EDP-Sciences},
     volume = {12},
     year = {2008},
     doi = {10.1051/ps:2007030},
     mrnumber = {2367990},
     language = {en},
     url = {https://numdam.org/articles/10.1051/ps:2007030/}
}
TY  - JOUR
AU  - Berkaoui, Abdel
AU  - Bossy, Mireille
AU  - Diop, Awa
TI  - Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence
JO  - ESAIM: Probability and Statistics
PY  - 2008
SP  - 1
EP  - 11
VL  - 12
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/ps:2007030/
DO  - 10.1051/ps:2007030
LA  - en
ID  - PS_2008__12__1_0
ER  - 
%0 Journal Article
%A Berkaoui, Abdel
%A Bossy, Mireille
%A Diop, Awa
%T Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence
%J ESAIM: Probability and Statistics
%D 2008
%P 1-11
%V 12
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/ps:2007030/
%R 10.1051/ps:2007030
%G en
%F PS_2008__12__1_0
Berkaoui, Abdel; Bossy, Mireille; Diop, Awa. Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 1-11. doi : 10.1051/ps:2007030. https://numdam.org/articles/10.1051/ps:2007030/

[1] A. Alfonsi, On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355-384. | MR | Zbl

[2] A. Berkaoui, Euler scheme for solutions of stochastic differential equations. Potugalia Mathematica Journal 61 (2004) 461-478. | MR | Zbl

[3] M. Bossy and A. Diop, Euler scheme for one dimensional SDEs with a diffusion coefficient function of the form |x|a, a in [1/2,1). Annals Appl. Prob. (Submitted).

[4] M. Bossy, E. Gobet and D. Talay, A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Probab. 41 (2004) 877-889. | MR | Zbl

[5] J. Cox, J.E. Ingersoll and S.A. Ross, A theory of the term structure of the interest rates. Econometrica 53 (1985) 385-407. | MR

[6] G. Deelstra and F. Delbaen, Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stochastic Models Data Anal. 14 (1998) 77-84. | MR | Zbl

[7] O. Faure, Simulation du Mouvement Brownien et des Diffusions. Ph.D. thesis, École nationale des ponts et chaussées (1992).

[8] P.S. Hagan, D. Kumar, A.S. Lesniewski and D.E. Woodward, Managing smile risk. WILMOTT Magazine (September, 2002).

[9] J.C. Hull and A. White, Pricing interest-rate derivative securities. Rev. Finan. Stud. 3 (1990) 573-592.

[10] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988). | MR | Zbl

  • Tang, Yiyi Strong order one convergence of the projected Euler–Maruyama method for the Wright-Fisher model, Communications in Nonlinear Science and Numerical Simulation (2025), p. 108759 | DOI:10.1016/j.cnsns.2025.108759
  • Ngo, Hoang-Long; Taguchi, Dai Numerical schemes for radial Dunkl processes, IMA Journal of Numerical Analysis (2025) | DOI:10.1093/imanum/draf005
  • Mickel, Annalena; Neuenkirch, Andreas On the convergence order of the Euler scheme for scalar SDEs with Hölder-type diffusion coefficients, Journal of Mathematical Analysis and Applications, Volume 542 (2025) no. 1, p. 128788 | DOI:10.1016/j.jmaa.2024.128788
  • Li, Libo; Liu, Guanting Positivity-preserving numerical scheme for the alpha-constant elasticity of variance process, Journal of Mathematical Analysis and Applications, Volume 547 (2025) no. 2, p. 129341 | DOI:10.1016/j.jmaa.2025.129341
  • Kamrani, Minoo; Hausenblas, Erika An adaptive positive preserving numerical scheme based on splitting method for the solution of the CIR model, Mathematics and Computers in Simulation, Volume 229 (2025), p. 673 | DOI:10.1016/j.matcom.2024.10.021
  • Lord, Gabriel; Wang, Mengchao Convergence of a exponential tamed method for a general interest rate model, Applied Mathematics and Computation, Volume 467 (2024), p. 128503 | DOI:10.1016/j.amc.2023.128503
  • Tang, Yiyi; Mao, Xuerong The logarithmic truncated EM method with weaker conditions, Applied Numerical Mathematics, Volume 198 (2024), p. 258 | DOI:10.1016/j.apnum.2024.01.009
  • Müller-Gronbach, Thomas; Yaroslavtseva, Larisa On the complexity of strong approximation of stochastic differential equations with a non-Lipschitz drift coefficient, Journal of Complexity, Volume 85 (2024), p. 101870 | DOI:10.1016/j.jco.2024.101870
  • Tang, Yiyi; Mao, Xuerong The modified truncated Euler–Maruyama method for stochastic differential equations with concave diffusion coefficients, Journal of Computational and Applied Mathematics, Volume 440 (2024), p. 115660 | DOI:10.1016/j.cam.2023.115660
  • Liu, Ruishu; Neuenkirch, Andreas; Wang, Xiaojie A strong order 1.5 boundary preserving discretization scheme for scalar SDEs defined in a domain, Mathematics of Computation (2024) | DOI:10.1090/mcom/4014
  • Giles, Michael; Sheridan-Methven, Oliver Approximating Inverse Cumulative Distribution Functions to Produce Approximate Random Variables, ACM Transactions on Mathematical Software, Volume 49 (2023) no. 3, p. 1 | DOI:10.1145/3604935
  • Kelly, Cónall; Lord, Gabriel J. An adaptive splitting method for the Cox-Ingersoll-Ross process, Applied Numerical Mathematics, Volume 186 (2023), p. 252 | DOI:10.1016/j.apnum.2023.01.014
  • Mickel, Annalena; Neuenkirch, Andreas The weak convergence order of two Euler-type discretization schemes for the log-Heston model, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 6, p. 3326 | DOI:10.1093/imanum/drac069
  • Lei, Ziyi; Gan, Siqing; Chen, Ziheng Strong and weak convergence rates of logarithmic transformed truncated EM methods for SDEs with positive solutions, Journal of Computational and Applied Mathematics, Volume 419 (2023), p. 114758 | DOI:10.1016/j.cam.2022.114758
  • Nakagawa, Takuya; Taguchi, Dai; Yuasa, Tomooki Semi-implicit Euler–Maruyama scheme for polynomial diffusions on the unit ball, Journal of Mathematical Analysis and Applications, Volume 519 (2023) no. 2, p. 126829 | DOI:10.1016/j.jmaa.2022.126829
  • Richard, Alexandre; Tan, Xiaolu; Yang, Fan On the Discrete-Time Simulation of the Rough Heston Model, SIAM Journal on Financial Mathematics, Volume 14 (2023) no. 1, p. 223 | DOI:10.1137/21m1443807
  • Arrouy, Pierre-Edouard; Boumezoued, Alexandre; Lapeyre, Bernard; Mehalla, Sophian Jacobi stochastic volatility factor for the LIBOR market model, Finance and Stochastics, Volume 26 (2022) no. 4, p. 771 | DOI:10.1007/s00780-022-00488-5
  • Bossy, Mireille; Jabir, Jean-François; Martínez Rodríguez, Kerlyns Instantaneous turbulent kinetic energy modelling based on Lagrangian stochastic approach in CFD and application to wind energy, Journal of Computational Physics, Volume 464 (2022), p. 110929 | DOI:10.1016/j.jcp.2021.110929
  • Yang, Hongfu; Huang, Jianhua Convergence and stability of modified partially truncated Euler–Maruyama method for nonlinear stochastic differential equations with Hölder continuous diffusion coefficient, Journal of Computational and Applied Mathematics, Volume 404 (2022), p. 113895 | DOI:10.1016/j.cam.2021.113895
  • Gao, Xiangyu; Wang, Jianqiao; Wang, Yanxia; Yang, Hongfu The truncated Euler–Maruyama method for CIR model driven by fractional Brownian motion, Statistics Probability Letters, Volume 189 (2022), p. 109573 | DOI:10.1016/j.spl.2022.109573
  • Yi, Yulian; Hu, Yaozhong; Zhao, Jingjun Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations, Communications in Nonlinear Science and Numerical Simulation, Volume 101 (2021), p. 105895 | DOI:10.1016/j.cnsns.2021.105895
  • Naryongo, Raphael; Ngare, Philip; Waititu, Anthony; Léandre, Remi The Log-Asset Dynamic with Euler–Maruyama Scheme under Wishart Processes, International Journal of Mathematics and Mathematical Sciences, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/4050722
  • Gottwald, Georg A.; Melbourne, Ian Simulation of Non-Lipschitz Stochastic Differential Equations Driven by α-Stable Noise: A Method Based on Deterministic Homogenization, Multiscale Modeling Simulation, Volume 19 (2021) no. 2, p. 665 | DOI:10.1137/20m1333183
  • Zhang, Shao-Qin; Yuan, Chenggui Stochastic differential equations driven by fractional Brownian motion with locally Lipschitz drift and their implicit Euler approximation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 4, p. 1278 | DOI:10.1017/prm.2020.60
  • Malham, Simon J. A.; Shen, Jiaqi; Wiese, Anke Series Expansions and Direct Inversion for the Heston Model, SIAM Journal on Financial Mathematics, Volume 12 (2021) no. 1, p. 487 | DOI:10.1137/19m126791x
  • Azencott, Robert; Ren, Peng; Timofeyev, Ilya Realised volatility and parametric estimation of Heston SDEs, Finance and Stochastics, Volume 24 (2020) no. 3, p. 723 | DOI:10.1007/s00780-020-00427-2
  • Cozma, Andrei; Reisinger, Christoph Strong order 1/2 convergence of full truncation Euler approximations to the Cox–Ingersoll–Ross process, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 1, p. 358 | DOI:10.1093/imanum/dry067
  • Liang, Xingyin; Sun, Youfa; Yao, Yuhang Key Technique of Almost Exact Simulation for Non-affine Heston Model, Journal of Physics: Conference Series, Volume 1624 (2020) no. 2, p. 022016 | DOI:10.1088/1742-6596/1624/2/022016
  • Ben Alaya, Mohamed; Kebaier, Ahmed; Tran, Ngoc Khue Local asymptotic properties for Cox‐Ingersoll‐Ross process with discrete observations, Scandinavian Journal of Statistics, Volume 47 (2020) no. 4, p. 1401 | DOI:10.1111/sjos.12494
  • Bourza, Mohamed; Benabdallah, Mohsine Convergence rate of Euler scheme for time-inhomogeneous SDEs involving the local time of the unknown process, Stochastic Models, Volume 36 (2020) no. 3, p. 452 | DOI:10.1080/15326349.2020.1748506
  • Hong, Jialin; Huang, Chuying; Kamrani, Minoo; Wang, Xu Optimal strong convergence rate of a backward Euler type scheme for the Cox–Ingersoll–Ross model driven by fractional Brownian motion, Stochastic Processes and their Applications, Volume 130 (2020) no. 5, p. 2675 | DOI:10.1016/j.spa.2019.07.014
  • Li, Libo; Taguchi, Dai On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case, BIT Numerical Mathematics, Volume 59 (2019) no. 3, p. 747 | DOI:10.1007/s10543-019-00753-8
  • Hefter, Mario; Jentzen, Arnulf On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes, Finance and Stochastics, Volume 23 (2019) no. 1, p. 139 | DOI:10.1007/s00780-018-0375-5
  • Etchegaray, Christèle; Meunier, Nicolas A stochastic model for cell adhesion to the vascular wall, Journal of Mathematical Biology, Volume 79 (2019) no. 5, p. 1665 | DOI:10.1007/s00285-019-01407-7
  • Barczy, Mátyás; Ben Alaya, Mohamed; Kebaier, Ahmed; Pap, Gyula Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model, Journal of Statistical Planning and Inference, Volume 198 (2019), p. 139 | DOI:10.1016/j.jspi.2018.02.002
  • Barczy, Mátyás; Nyul, Balázs; Pap, Gyula Least-Squares Estimation for the Subcritical Heston Model Based on Continuous-Time Observations, Journal of Statistical Theory and Practice, Volume 13 (2019) no. 1 | DOI:10.1007/s42519-018-0007-6
  • Ngo, Hoang Long; Luong, Duc Trong Tamed Euler–Maruyama approximation for stochastic differential equations with locally Hölder continuous diffusion coefficients, Statistics Probability Letters, Volume 145 (2019), p. 133 | DOI:10.1016/j.spl.2018.09.006
  • Yuan, Yuan Non-Negativity Preserving Numerical Algorithms for Problems in Mathematical Finance, Applied Mathematics, Volume 09 (2018) no. 03, p. 313 | DOI:10.4236/am.2018.93024
  • Bossy, Mireille; Olivero, Héctor Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs, Bernoulli, Volume 24 (2018) no. 3 | DOI:10.3150/16-bej918
  • BORMETTI, G.; CALLEGARO, G.; LIVIERI, G.; PALLAVICINI, A. A backward Monte Carlo approach to exotic option pricing, European Journal of Applied Mathematics, Volume 29 (2018) no. 1, p. 146 | DOI:10.1017/s0956792517000079
  • Hefter, Mario; Herzwurm, André Strong convergence rates for Cox–Ingersoll–Ross processes — Full parameter range, Journal of Mathematical Analysis and Applications, Volume 459 (2018) no. 2, p. 1079 | DOI:10.1016/j.jmaa.2017.10.076
  • Müller-Gronbach, Thomas; Yaroslavtseva, Larisa A note on strong approximation of SDEs with smooth coefficients that have at most linearly growing derivatives, Journal of Mathematical Analysis and Applications, Volume 467 (2018) no. 2, p. 1013 | DOI:10.1016/j.jmaa.2018.07.041
  • Cozma, Andrei; Mariapragassam, Matthieu; Reisinger, Christoph Convergence of an Euler Scheme for a Hybrid Stochastic-Local Volatility Model with Stochastic Rates in Foreign Exchange Markets, SIAM Journal on Financial Mathematics, Volume 9 (2018) no. 1, p. 127 | DOI:10.1137/17m1114569
  • Cozma, Andrei; Reisinger, Christoph Strong Convergence Rates for Euler Approximations to a Class of Stochastic Path-Dependent Volatility Models, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 6, p. 3430 | DOI:10.1137/17m1136754
  • Ngo, Hoang-Long; Luong, Duc-Trong Strong rate of tamed Euler–Maruyama approximation for stochastic differential equations with Hölder continuous diffusion coefficient, Brazilian Journal of Probability and Statistics, Volume 31 (2017) no. 1 | DOI:10.1214/15-bjps301
  • Yaroslavtseva, Larisa On non-polynomial lower error bounds for adaptive strong approximation of SDEs, Journal of Complexity, Volume 42 (2017), p. 1 | DOI:10.1016/j.jco.2017.04.002
  • Yang, Xu; Wang, Xiaojie A transformed jump-adapted backward Euler method for jump-extended CIR and CEV models, Numerical Algorithms, Volume 74 (2017) no. 1, p. 39 | DOI:10.1007/s11075-016-0137-4
  • Hu, Wenbin; Zhou, Junzi Backward simulation methods for pricing American options under the CIR process, Quantitative Finance, Volume 17 (2017) no. 11, p. 1683 | DOI:10.1080/14697688.2017.1307513
  • Yaroslavtseva, Larisa; Müller-Gronbach, Thomas On sub-polynomial lower error bounds for quadrature of SDEs with bounded smooth coefficients, Stochastic Analysis and Applications, Volume 35 (2017) no. 3, p. 423 | DOI:10.1080/07362994.2016.1263157
  • Wu, Yang-Che; Huang, Yi-Ting; Lin, Shih-Kuei; Chuang, Ming-Che Fair valuation of mortgage insurance under stochastic default and interest rates, The North American Journal of Economics and Finance, Volume 42 (2017), p. 433 | DOI:10.1016/j.najef.2017.08.003
  • Reisinger, Christoph; Cozma, Andrei Exponential integrability properties of Euler discretization schemes for the Cox–Ingersoll–Ross process, Discrete and Continuous Dynamical Systems - Series B, Volume 21 (2016) no. 10, p. 3359 | DOI:10.3934/dcdsb.2016101
  • Benabdallah, Mohsine; Elkettani, Youssfi; Hiderah, Kamal Approximation of Euler–Maruyama for one-dimensional stochastic differential equations involving the local times of the unknown process, Monte Carlo Methods and Applications, Volume 22 (2016) no. 4, p. 307 | DOI:10.1515/mcma-2016-0115
  • Chassagneux, Jean-François; Jacquier, Antoine; Mihaylov, Ivo An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients, SIAM Journal on Financial Mathematics, Volume 7 (2016) no. 1, p. 993 | DOI:10.1137/15m1017788
  • Alfonsi, Aurélien Simulation of the CIR Process, Affine Diffusions and Related Processes: Simulation, Theory and Applications, Volume 6 (2015), p. 67 | DOI:10.1007/978-3-319-05221-2_3
  • Omland, Steffen; Hefter, Mario; Ritter, Klaus; Brugger, Christian; De Schryver, Christian; Wehn, Norbert; Kostiuk, Anton Exploiting Mixed-Precision Arithmetics in a Multilevel Monte Carlo Approach on FPGAs, FPGA Based Accelerators for Financial Applications (2015), p. 191 | DOI:10.1007/978-3-319-15407-7_9
  • Halidias, Nikolaos An explicit and positivity preserving numerical scheme for the mean reverting CEV model, Japan Journal of Industrial and Applied Mathematics, Volume 32 (2015) no. 2, p. 545 | DOI:10.1007/s13160-015-0183-7
  • Szavits-Nossan, J; Evans, M R Inequivalence of nonequilibrium path ensembles: the example of stochastic bridges, Journal of Statistical Mechanics: Theory and Experiment, Volume 2015 (2015) no. 12, p. P12008 | DOI:10.1088/1742-5468/2015/12/p12008
  • Altmayer, Martin; Neuenkirch, Andreas Multilevel Monte Carlo Quadrature of Discontinuous Payoffs in the Generalized Heston Model Using Malliavin Integration by Parts, SIAM Journal on Financial Mathematics, Volume 6 (2015) no. 1, p. 22 | DOI:10.1137/130933629
  • TANAKA, HIDEYUKI; YAMADA, TOSHIHIRO STRONG CONVERGENCE FOR EULER–MARUYAMA AND MILSTEIN SCHEMES WITH ASYMPTOTIC METHOD, International Journal of Theoretical and Applied Finance, Volume 17 (2014) no. 02, p. 1450014 | DOI:10.1142/s0219024914500149
  • Neuenkirch, Andreas; Szpruch, Lukasz First order strong approximations of scalar SDEs defined in a domain, Numerische Mathematik, Volume 128 (2014) no. 1, p. 103 | DOI:10.1007/s00211-014-0606-4
  • Bonelli, Maxime; Mantilla-Garcia, Daniel Predictive Systems Under Economic Constraints, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2441323
  • Liu, Wei; Mao, Xuerong Strong convergence of the stopped Euler–Maruyama method for nonlinear stochastic differential equations, Applied Mathematics and Computation, Volume 223 (2013), p. 389 | DOI:10.1016/j.amc.2013.08.023
  • MALHAM, SIMON J. A.; WIESE, ANKE CHI-SQUARE SIMULATION OF THE CIR PROCESS AND THE HESTON MODEL, International Journal of Theoretical and Applied Finance, Volume 16 (2013) no. 03, p. 1350014 | DOI:10.1142/s0219024913500143
  • Mao, Xuerong; Szpruch, Lukasz Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients, Journal of Computational and Applied Mathematics, Volume 238 (2013), p. 14 | DOI:10.1016/j.cam.2012.08.015
  • Chen, Nan; Huang, Zhengyu Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations, Mathematics of Operations Research, Volume 38 (2013) no. 3, p. 591 | DOI:10.1287/moor.2013.0585
  • Tse, S. T.; Wan, Justin W. L. Low-bias simulation scheme for the Heston model by Inverse Gaussian approximation, Quantitative Finance, Volume 13 (2013) no. 6, p. 919 | DOI:10.1080/14697688.2012.696678
  • Alfonsi, Aurélien Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process, Statistics Probability Letters, Volume 83 (2013) no. 2, p. 602 | DOI:10.1016/j.spl.2012.10.034
  • Mao, Xuerong; Szpruch, Lukasz Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients, Stochastics, Volume 85 (2013) no. 1, p. 144 | DOI:10.1080/17442508.2011.651213
  • Dangerfield, C. E.; Kay, D.; MacNamara, S.; Burrage, K. A boundary preserving numerical algorithm for the Wright-Fisher model with mutation, BIT Numerical Mathematics, Volume 52 (2012) no. 2, p. 283 | DOI:10.1007/s10543-011-0351-3
  • Dereich, Steffen; Neuenkirch, Andreas; Szpruch, Lukasz An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 468 (2012) no. 2140, p. 1105 | DOI:10.1098/rspa.2011.0505
  • Alaya, Mohamed Ben; Kebaier, Ahmed Parameter Estimation for the Square-Root Diffusions: Ergodic and Nonergodic Cases, Stochastic Models, Volume 28 (2012) no. 4, p. 609 | DOI:10.1080/15326349.2012.726042
  • Pagès, Gilles; Panloup, Fabien Ergodic approximation of the distribution of a stationary diffusion: Rate of convergence, The Annals of Applied Probability, Volume 22 (2012) no. 3 | DOI:10.1214/11-aap779
  • Szpruch, Lukasz; Mao, Xuerong; Higham, Desmond J.; Pan, Jiazhu Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model, BIT Numerical Mathematics, Volume 51 (2011) no. 2, p. 405 | DOI:10.1007/s10543-010-0288-y
  • Glasserman, Paul; Kim, Kyoung-Kuk Gamma expansion of the Heston stochastic volatility model, Finance and Stochastics, Volume 15 (2011) no. 2, p. 267 | DOI:10.1007/s00780-009-0115-y
  • Dana, Saswati; Raha, Soumyendu Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-α method, Journal of Computational Physics, Volume 230 (2011) no. 24, p. 8813 | DOI:10.1016/j.jcp.2011.07.032
  • Hutzenthaler, Martin; Jentzen, Arnulf; Kloeden, Peter E. Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 467 (2011) no. 2130, p. 1563 | DOI:10.1098/rspa.2010.0348
  • Mishura, Yuliya S.; Posashkova, Svitlana V. The rate of convergence of the Euler scheme to the solution of stochastic differential equations with nonhomogeneous coefficients and non-Lipschitz diffusion, Random Operators and Stochastic Equations, Volume 19 (2011) no. 1 | DOI:10.1515/rose.2011.003
  • Sbai, Mohamed; Jourdain, Benjamin High Order Discretization Schemes for Stochastic Volatility Models, SSRN Electronic Journal (2011) | DOI:10.2139/ssrn.1452727
  • Gyöngy, István; Rásonyi, Miklós A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients, Stochastic Processes and their Applications, Volume 121 (2011) no. 10, p. 2189 | DOI:10.1016/j.spa.2011.06.008
  • De Marco, Stefano Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions, The Annals of Applied Probability, Volume 21 (2011) no. 4 | DOI:10.1214/10-aap717
  • Zubchenko, V. P.; Mishura, Yu. S. Rate of convergence in the Euler scheme for stochastic differential equations with non-Lipschitz diffusion and Poisson measure, Ukrainian Mathematical Journal, Volume 63 (2011) no. 1, p. 49 | DOI:10.1007/s11253-011-0487-y
  • Lord, Roger; Koekkoek, Remmert; Dijk, Dick Van A comparison of biased simulation schemes for stochastic volatility models, Quantitative Finance, Volume 10 (2010) no. 2, p. 177 | DOI:10.1080/14697680802392496
  • Tse, Shu Tong; Wan, Justin W. L. Low-Bias Simulation Scheme for the Heston Model by Inverse Gaussian Approximation, SSRN Electronic Journal (2010) | DOI:10.2139/ssrn.1644977
  • Gauthier, Pierre; Possamai, Dylan Efficient Simulation of the Double Heston Model, SSRN Electronic Journal (2010) | DOI:10.2139/ssrn.1434853
  • Labbé, Chantal; Remillard, Bruno; Renaud, Jean-Francois A Simple Discretization Scheme for Nonnegative Diffusion Processes, with Applications to Option Pricing, SSRN Electronic Journal (2010) | DOI:10.2139/ssrn.1619989
  • Pagès, Gilles; Panloup, Fabien Approximation of the distribution of a stationary Markov process with application to option pricing, Bernoulli, Volume 15 (2009) no. 1 | DOI:10.3150/08-bej142
  • Platen, Eckhard; Rendek, Renatak Exact Scenario Simulation for Selected Multi-Dimensional Stochastic Processes, SSRN Electronic Journal (2009) | DOI:10.2139/ssrn.2172581
  • Glasserman, Paul; Kim, Kyoung-Kuk Gamma Expansion of the Heston Stochastic Volatility Model, SSRN Electronic Journal (2008) | DOI:10.2139/ssrn.1279850
  • Lord, Roger; Koekkoek, Remmert; van Dijk, Dick J. C. A Comparison of Biased Simulation Schemes for Stochastic Volatility Models, SSRN Electronic Journal (2008) | DOI:10.2139/ssrn.903116

Cité par 89 documents. Sources : Crossref