We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form
Mots-clés : discretization scheme, strong convergence, CIR process
@article{PS_2008__12__1_0, author = {Berkaoui, Abdel and Bossy, Mireille and Diop, Awa}, title = {Euler scheme for {SDEs} with {non-Lipschitz} diffusion coefficient : strong convergence}, journal = {ESAIM: Probability and Statistics}, pages = {1--11}, publisher = {EDP-Sciences}, volume = {12}, year = {2008}, doi = {10.1051/ps:2007030}, mrnumber = {2367990}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2007030/} }
TY - JOUR AU - Berkaoui, Abdel AU - Bossy, Mireille AU - Diop, Awa TI - Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence JO - ESAIM: Probability and Statistics PY - 2008 SP - 1 EP - 11 VL - 12 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ps:2007030/ DO - 10.1051/ps:2007030 LA - en ID - PS_2008__12__1_0 ER -
%0 Journal Article %A Berkaoui, Abdel %A Bossy, Mireille %A Diop, Awa %T Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence %J ESAIM: Probability and Statistics %D 2008 %P 1-11 %V 12 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ps:2007030/ %R 10.1051/ps:2007030 %G en %F PS_2008__12__1_0
Berkaoui, Abdel; Bossy, Mireille; Diop, Awa. Euler scheme for SDEs with non-Lipschitz diffusion coefficient : strong convergence. ESAIM: Probability and Statistics, Tome 12 (2008), pp. 1-11. doi : 10.1051/ps:2007030. https://numdam.org/articles/10.1051/ps:2007030/
[1] On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods Appl. 11 (2005) 355-384. | MR | Zbl
,[2] Euler scheme for solutions of stochastic differential equations. Potugalia Mathematica Journal 61 (2004) 461-478. | MR | Zbl
,
[3] Euler scheme for one dimensional SDEs with a diffusion coefficient function of the form
[4] A symmetrized Euler scheme for an efficient approximation of reflected diffusions. J. Appl. Probab. 41 (2004) 877-889. | MR | Zbl
, and ,[5] A theory of the term structure of the interest rates. Econometrica 53 (1985) 385-407. | MR
, and ,[6] Convergence of discretized stochastic (interest rate) processes with stochastic drift term. Appl. Stochastic Models Data Anal. 14 (1998) 77-84. | MR | Zbl
and ,[7] Simulation du Mouvement Brownien et des Diffusions. Ph.D. thesis, École nationale des ponts et chaussées (1992).
,[8] Managing smile risk. WILMOTT Magazine (September, 2002).
, , and ,[9] Pricing interest-rate derivative securities. Rev. Finan. Stud. 3 (1990) 573-592.
and ,[10] Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988). | MR | Zbl
and ,- Strong order one convergence of the projected Euler–Maruyama method for the Wright-Fisher model, Communications in Nonlinear Science and Numerical Simulation (2025), p. 108759 | DOI:10.1016/j.cnsns.2025.108759
- Numerical schemes for radial Dunkl processes, IMA Journal of Numerical Analysis (2025) | DOI:10.1093/imanum/draf005
- On the convergence order of the Euler scheme for scalar SDEs with Hölder-type diffusion coefficients, Journal of Mathematical Analysis and Applications, Volume 542 (2025) no. 1, p. 128788 | DOI:10.1016/j.jmaa.2024.128788
- Positivity-preserving numerical scheme for the alpha-constant elasticity of variance process, Journal of Mathematical Analysis and Applications, Volume 547 (2025) no. 2, p. 129341 | DOI:10.1016/j.jmaa.2025.129341
- An adaptive positive preserving numerical scheme based on splitting method for the solution of the CIR model, Mathematics and Computers in Simulation, Volume 229 (2025), p. 673 | DOI:10.1016/j.matcom.2024.10.021
- Convergence of a exponential tamed method for a general interest rate model, Applied Mathematics and Computation, Volume 467 (2024), p. 128503 | DOI:10.1016/j.amc.2023.128503
- The logarithmic truncated EM method with weaker conditions, Applied Numerical Mathematics, Volume 198 (2024), p. 258 | DOI:10.1016/j.apnum.2024.01.009
- On the complexity of strong approximation of stochastic differential equations with a non-Lipschitz drift coefficient, Journal of Complexity, Volume 85 (2024), p. 101870 | DOI:10.1016/j.jco.2024.101870
- The modified truncated Euler–Maruyama method for stochastic differential equations with concave diffusion coefficients, Journal of Computational and Applied Mathematics, Volume 440 (2024), p. 115660 | DOI:10.1016/j.cam.2023.115660
- A strong order 1.5 boundary preserving discretization scheme for scalar SDEs defined in a domain, Mathematics of Computation (2024) | DOI:10.1090/mcom/4014
- Approximating Inverse Cumulative Distribution Functions to Produce Approximate Random Variables, ACM Transactions on Mathematical Software, Volume 49 (2023) no. 3, p. 1 | DOI:10.1145/3604935
- An adaptive splitting method for the Cox-Ingersoll-Ross process, Applied Numerical Mathematics, Volume 186 (2023), p. 252 | DOI:10.1016/j.apnum.2023.01.014
- The weak convergence order of two Euler-type discretization schemes for the log-Heston model, IMA Journal of Numerical Analysis, Volume 43 (2023) no. 6, p. 3326 | DOI:10.1093/imanum/drac069
- Strong and weak convergence rates of logarithmic transformed truncated EM methods for SDEs with positive solutions, Journal of Computational and Applied Mathematics, Volume 419 (2023), p. 114758 | DOI:10.1016/j.cam.2022.114758
- Semi-implicit Euler–Maruyama scheme for polynomial diffusions on the unit ball, Journal of Mathematical Analysis and Applications, Volume 519 (2023) no. 2, p. 126829 | DOI:10.1016/j.jmaa.2022.126829
- On the Discrete-Time Simulation of the Rough Heston Model, SIAM Journal on Financial Mathematics, Volume 14 (2023) no. 1, p. 223 | DOI:10.1137/21m1443807
- Jacobi stochastic volatility factor for the LIBOR market model, Finance and Stochastics, Volume 26 (2022) no. 4, p. 771 | DOI:10.1007/s00780-022-00488-5
- Instantaneous turbulent kinetic energy modelling based on Lagrangian stochastic approach in CFD and application to wind energy, Journal of Computational Physics, Volume 464 (2022), p. 110929 | DOI:10.1016/j.jcp.2021.110929
- Convergence and stability of modified partially truncated Euler–Maruyama method for nonlinear stochastic differential equations with Hölder continuous diffusion coefficient, Journal of Computational and Applied Mathematics, Volume 404 (2022), p. 113895 | DOI:10.1016/j.cam.2021.113895
- The truncated Euler–Maruyama method for CIR model driven by fractional Brownian motion, Statistics Probability Letters, Volume 189 (2022), p. 109573 | DOI:10.1016/j.spl.2022.109573
- Positivity preserving logarithmic Euler-Maruyama type scheme for stochastic differential equations, Communications in Nonlinear Science and Numerical Simulation, Volume 101 (2021), p. 105895 | DOI:10.1016/j.cnsns.2021.105895
- The Log-Asset Dynamic with Euler–Maruyama Scheme under Wishart Processes, International Journal of Mathematics and Mathematical Sciences, Volume 2021 (2021), p. 1 | DOI:10.1155/2021/4050722
- Simulation of Non-Lipschitz Stochastic Differential Equations Driven by
-Stable Noise: A Method Based on Deterministic Homogenization, Multiscale Modeling Simulation, Volume 19 (2021) no. 2, p. 665 | DOI:10.1137/20m1333183 - Stochastic differential equations driven by fractional Brownian motion with locally Lipschitz drift and their implicit Euler approximation, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, Volume 151 (2021) no. 4, p. 1278 | DOI:10.1017/prm.2020.60
- Series Expansions and Direct Inversion for the Heston Model, SIAM Journal on Financial Mathematics, Volume 12 (2021) no. 1, p. 487 | DOI:10.1137/19m126791x
- Realised volatility and parametric estimation of Heston SDEs, Finance and Stochastics, Volume 24 (2020) no. 3, p. 723 | DOI:10.1007/s00780-020-00427-2
- Strong order 1/2 convergence of full truncation Euler approximations to the Cox–Ingersoll–Ross process, IMA Journal of Numerical Analysis, Volume 40 (2020) no. 1, p. 358 | DOI:10.1093/imanum/dry067
- Key Technique of Almost Exact Simulation for Non-affine Heston Model, Journal of Physics: Conference Series, Volume 1624 (2020) no. 2, p. 022016 | DOI:10.1088/1742-6596/1624/2/022016
- Local asymptotic properties for Cox‐Ingersoll‐Ross process with discrete observations, Scandinavian Journal of Statistics, Volume 47 (2020) no. 4, p. 1401 | DOI:10.1111/sjos.12494
- Convergence rate of Euler scheme for time-inhomogeneous SDEs involving the local time of the unknown process, Stochastic Models, Volume 36 (2020) no. 3, p. 452 | DOI:10.1080/15326349.2020.1748506
- Optimal strong convergence rate of a backward Euler type scheme for the Cox–Ingersoll–Ross model driven by fractional Brownian motion, Stochastic Processes and their Applications, Volume 130 (2020) no. 5, p. 2675 | DOI:10.1016/j.spa.2019.07.014
- On a positivity preserving numerical scheme for jump-extended CIR process: the alpha-stable case, BIT Numerical Mathematics, Volume 59 (2019) no. 3, p. 747 | DOI:10.1007/s10543-019-00753-8
- On arbitrarily slow convergence rates for strong numerical approximations of Cox–Ingersoll–Ross processes and squared Bessel processes, Finance and Stochastics, Volume 23 (2019) no. 1, p. 139 | DOI:10.1007/s00780-018-0375-5
- A stochastic model for cell adhesion to the vascular wall, Journal of Mathematical Biology, Volume 79 (2019) no. 5, p. 1665 | DOI:10.1007/s00285-019-01407-7
- Asymptotic behavior of maximum likelihood estimators for a jump-type Heston model, Journal of Statistical Planning and Inference, Volume 198 (2019), p. 139 | DOI:10.1016/j.jspi.2018.02.002
- Least-Squares Estimation for the Subcritical Heston Model Based on Continuous-Time Observations, Journal of Statistical Theory and Practice, Volume 13 (2019) no. 1 | DOI:10.1007/s42519-018-0007-6
- Tamed Euler–Maruyama approximation for stochastic differential equations with locally Hölder continuous diffusion coefficients, Statistics Probability Letters, Volume 145 (2019), p. 133 | DOI:10.1016/j.spl.2018.09.006
- Non-Negativity Preserving Numerical Algorithms for Problems in Mathematical Finance, Applied Mathematics, Volume 09 (2018) no. 03, p. 313 | DOI:10.4236/am.2018.93024
- Strong convergence of the symmetrized Milstein scheme for some CEV-like SDEs, Bernoulli, Volume 24 (2018) no. 3 | DOI:10.3150/16-bej918
- A backward Monte Carlo approach to exotic option pricing, European Journal of Applied Mathematics, Volume 29 (2018) no. 1, p. 146 | DOI:10.1017/s0956792517000079
- Strong convergence rates for Cox–Ingersoll–Ross processes — Full parameter range, Journal of Mathematical Analysis and Applications, Volume 459 (2018) no. 2, p. 1079 | DOI:10.1016/j.jmaa.2017.10.076
- A note on strong approximation of SDEs with smooth coefficients that have at most linearly growing derivatives, Journal of Mathematical Analysis and Applications, Volume 467 (2018) no. 2, p. 1013 | DOI:10.1016/j.jmaa.2018.07.041
- Convergence of an Euler Scheme for a Hybrid Stochastic-Local Volatility Model with Stochastic Rates in Foreign Exchange Markets, SIAM Journal on Financial Mathematics, Volume 9 (2018) no. 1, p. 127 | DOI:10.1137/17m1114569
- Strong Convergence Rates for Euler Approximations to a Class of Stochastic Path-Dependent Volatility Models, SIAM Journal on Numerical Analysis, Volume 56 (2018) no. 6, p. 3430 | DOI:10.1137/17m1136754
- Strong rate of tamed Euler–Maruyama approximation for stochastic differential equations with Hölder continuous diffusion coefficient, Brazilian Journal of Probability and Statistics, Volume 31 (2017) no. 1 | DOI:10.1214/15-bjps301
- On non-polynomial lower error bounds for adaptive strong approximation of SDEs, Journal of Complexity, Volume 42 (2017), p. 1 | DOI:10.1016/j.jco.2017.04.002
- A transformed jump-adapted backward Euler method for jump-extended CIR and CEV models, Numerical Algorithms, Volume 74 (2017) no. 1, p. 39 | DOI:10.1007/s11075-016-0137-4
- Backward simulation methods for pricing American options under the CIR process, Quantitative Finance, Volume 17 (2017) no. 11, p. 1683 | DOI:10.1080/14697688.2017.1307513
- On sub-polynomial lower error bounds for quadrature of SDEs with bounded smooth coefficients, Stochastic Analysis and Applications, Volume 35 (2017) no. 3, p. 423 | DOI:10.1080/07362994.2016.1263157
- Fair valuation of mortgage insurance under stochastic default and interest rates, The North American Journal of Economics and Finance, Volume 42 (2017), p. 433 | DOI:10.1016/j.najef.2017.08.003
- Exponential integrability properties of Euler discretization schemes for the Cox–Ingersoll–Ross process, Discrete and Continuous Dynamical Systems - Series B, Volume 21 (2016) no. 10, p. 3359 | DOI:10.3934/dcdsb.2016101
- Approximation of Euler–Maruyama for one-dimensional stochastic differential equations involving the local times of the unknown process, Monte Carlo Methods and Applications, Volume 22 (2016) no. 4, p. 307 | DOI:10.1515/mcma-2016-0115
- An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients, SIAM Journal on Financial Mathematics, Volume 7 (2016) no. 1, p. 993 | DOI:10.1137/15m1017788
- Simulation of the CIR Process, Affine Diffusions and Related Processes: Simulation, Theory and Applications, Volume 6 (2015), p. 67 | DOI:10.1007/978-3-319-05221-2_3
- Exploiting Mixed-Precision Arithmetics in a Multilevel Monte Carlo Approach on FPGAs, FPGA Based Accelerators for Financial Applications (2015), p. 191 | DOI:10.1007/978-3-319-15407-7_9
- An explicit and positivity preserving numerical scheme for the mean reverting CEV model, Japan Journal of Industrial and Applied Mathematics, Volume 32 (2015) no. 2, p. 545 | DOI:10.1007/s13160-015-0183-7
- Inequivalence of nonequilibrium path ensembles: the example of stochastic bridges, Journal of Statistical Mechanics: Theory and Experiment, Volume 2015 (2015) no. 12, p. P12008 | DOI:10.1088/1742-5468/2015/12/p12008
- Multilevel Monte Carlo Quadrature of Discontinuous Payoffs in the Generalized Heston Model Using Malliavin Integration by Parts, SIAM Journal on Financial Mathematics, Volume 6 (2015) no. 1, p. 22 | DOI:10.1137/130933629
- STRONG CONVERGENCE FOR EULER–MARUYAMA AND MILSTEIN SCHEMES WITH ASYMPTOTIC METHOD, International Journal of Theoretical and Applied Finance, Volume 17 (2014) no. 02, p. 1450014 | DOI:10.1142/s0219024914500149
- First order strong approximations of scalar SDEs defined in a domain, Numerische Mathematik, Volume 128 (2014) no. 1, p. 103 | DOI:10.1007/s00211-014-0606-4
- Predictive Systems Under Economic Constraints, SSRN Electronic Journal (2014) | DOI:10.2139/ssrn.2441323
- Strong convergence of the stopped Euler–Maruyama method for nonlinear stochastic differential equations, Applied Mathematics and Computation, Volume 223 (2013), p. 389 | DOI:10.1016/j.amc.2013.08.023
- CHI-SQUARE SIMULATION OF THE CIR PROCESS AND THE HESTON MODEL, International Journal of Theoretical and Applied Finance, Volume 16 (2013) no. 03, p. 1350014 | DOI:10.1142/s0219024913500143
- Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients, Journal of Computational and Applied Mathematics, Volume 238 (2013), p. 14 | DOI:10.1016/j.cam.2012.08.015
- Localization and Exact Simulation of Brownian Motion-Driven Stochastic Differential Equations, Mathematics of Operations Research, Volume 38 (2013) no. 3, p. 591 | DOI:10.1287/moor.2013.0585
- Low-bias simulation scheme for the Heston model by Inverse Gaussian approximation, Quantitative Finance, Volume 13 (2013) no. 6, p. 919 | DOI:10.1080/14697688.2012.696678
- Strong order one convergence of a drift implicit Euler scheme: Application to the CIR process, Statistics Probability Letters, Volume 83 (2013) no. 2, p. 602 | DOI:10.1016/j.spl.2012.10.034
- Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients, Stochastics, Volume 85 (2013) no. 1, p. 144 | DOI:10.1080/17442508.2011.651213
- A boundary preserving numerical algorithm for the Wright-Fisher model with mutation, BIT Numerical Mathematics, Volume 52 (2012) no. 2, p. 283 | DOI:10.1007/s10543-011-0351-3
- An Euler-type method for the strong approximation of the Cox–Ingersoll–Ross process, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 468 (2012) no. 2140, p. 1105 | DOI:10.1098/rspa.2011.0505
- Parameter Estimation for the Square-Root Diffusions: Ergodic and Nonergodic Cases, Stochastic Models, Volume 28 (2012) no. 4, p. 609 | DOI:10.1080/15326349.2012.726042
- Ergodic approximation of the distribution of a stationary diffusion: Rate of convergence, The Annals of Applied Probability, Volume 22 (2012) no. 3 | DOI:10.1214/11-aap779
- Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model, BIT Numerical Mathematics, Volume 51 (2011) no. 2, p. 405 | DOI:10.1007/s10543-010-0288-y
- Gamma expansion of the Heston stochastic volatility model, Finance and Stochastics, Volume 15 (2011) no. 2, p. 267 | DOI:10.1007/s00780-009-0115-y
- Physically consistent simulation of mesoscale chemical kinetics: The non-negative FIS-α method, Journal of Computational Physics, Volume 230 (2011) no. 24, p. 8813 | DOI:10.1016/j.jcp.2011.07.032
- Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 467 (2011) no. 2130, p. 1563 | DOI:10.1098/rspa.2010.0348
- The rate of convergence of the Euler scheme to the solution of stochastic differential equations with nonhomogeneous coefficients and non-Lipschitz diffusion, Random Operators and Stochastic Equations, Volume 19 (2011) no. 1 | DOI:10.1515/rose.2011.003
- High Order Discretization Schemes for Stochastic Volatility Models, SSRN Electronic Journal (2011) | DOI:10.2139/ssrn.1452727
- A note on Euler approximations for SDEs with Hölder continuous diffusion coefficients, Stochastic Processes and their Applications, Volume 121 (2011) no. 10, p. 2189 | DOI:10.1016/j.spa.2011.06.008
- Smoothness and asymptotic estimates of densities for SDEs with locally smooth coefficients and applications to square root-type diffusions, The Annals of Applied Probability, Volume 21 (2011) no. 4 | DOI:10.1214/10-aap717
- Rate of convergence in the Euler scheme for stochastic differential equations with non-Lipschitz diffusion and Poisson measure, Ukrainian Mathematical Journal, Volume 63 (2011) no. 1, p. 49 | DOI:10.1007/s11253-011-0487-y
- A comparison of biased simulation schemes for stochastic volatility models, Quantitative Finance, Volume 10 (2010) no. 2, p. 177 | DOI:10.1080/14697680802392496
- Low-Bias Simulation Scheme for the Heston Model by Inverse Gaussian Approximation, SSRN Electronic Journal (2010) | DOI:10.2139/ssrn.1644977
- Efficient Simulation of the Double Heston Model, SSRN Electronic Journal (2010) | DOI:10.2139/ssrn.1434853
- A Simple Discretization Scheme for Nonnegative Diffusion Processes, with Applications to Option Pricing, SSRN Electronic Journal (2010) | DOI:10.2139/ssrn.1619989
- Approximation of the distribution of a stationary Markov process with application to option pricing, Bernoulli, Volume 15 (2009) no. 1 | DOI:10.3150/08-bej142
- Exact Scenario Simulation for Selected Multi-Dimensional Stochastic Processes, SSRN Electronic Journal (2009) | DOI:10.2139/ssrn.2172581
- Gamma Expansion of the Heston Stochastic Volatility Model, SSRN Electronic Journal (2008) | DOI:10.2139/ssrn.1279850
- A Comparison of Biased Simulation Schemes for Stochastic Volatility Models, SSRN Electronic Journal (2008) | DOI:10.2139/ssrn.903116
Cité par 89 documents. Sources : Crossref