In this paper, we study the stability of the solutions of Backward Stochastic Differential Equations (BSDE for short) with an almost surely finite random terminal time. More precisely, we are going to show that if
Mots-clés : backward stochastic differential equations (BSDE), stability of BSDEs, weak convergence of filtrations, stopping times
@article{PS_2006__10__141_0, author = {Toldo, Sandrine}, title = {Stability of solutions of {BSDEs} with random terminal time}, journal = {ESAIM: Probability and Statistics}, pages = {141--163}, publisher = {EDP-Sciences}, volume = {10}, year = {2006}, doi = {10.1051/ps:2006006}, mrnumber = {2218406}, zbl = {1185.60064}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2006006/} }
TY - JOUR AU - Toldo, Sandrine TI - Stability of solutions of BSDEs with random terminal time JO - ESAIM: Probability and Statistics PY - 2006 SP - 141 EP - 163 VL - 10 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ps:2006006/ DO - 10.1051/ps:2006006 LA - en ID - PS_2006__10__141_0 ER -
Toldo, Sandrine. Stability of solutions of BSDEs with random terminal time. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 141-163. doi : 10.1051/ps:2006006. https://numdam.org/articles/10.1051/ps:2006006/
[1] Filtration stability of backward SDE's. Stochastic Anal. Appl. 18 (2000) 11-37. | Zbl
and ,[2] Convergence of Probability Measures, Second Edition. Wiley and Sons, New York (1999). | MR | Zbl
,[3] Donsker-type theorem for BSDEs. Electron. Comm. Probab. 6 (2001) 1-14 (electronic). | Zbl
, and ,[4] On the robustness of backward stochastic differential equations. Stochastic Process. Appl. 97 (2002) 229-253. | Zbl
, and ,[5] From Brownian motion to Schrödinger's equation, Springer-Verlag, Berlin Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 312 (1995). | Zbl
and ,
[6] Stability in
[7] Corrigendum to: “Stability in
[8] On weak convergence of filtrations. Séminaire de probabilités XXXV, Springer-Verlag, Berlin Heidelberg New York, Lect. Notes Math. 1755 (2001) 306-328. | Numdam | Zbl
, and ,[9] Caractérisation de la tribu des événements antérieurs à un temps d'arrêt pour un processus stochastique. Acad. Roy. Belg., Bulletin de la Classe Scientifique 56 (1970) 1085-1092. | Zbl
and ,[10] Convergence in distribution and Skorokhod convergence for the general theory of processes. Probab. Theory Related Fields 89 (1991) 239-259. | Zbl
,[11] Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin Heidelberg New York (1987). | MR | Zbl
and ,[12] Brownian Motion and Stochastic Calculus, Second Edition. Springer-Verlag, Berlin Heidelberg New York (1991). | MR | Zbl
and ,[13] Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12 (2002) 302-316. | Zbl
, , and ,[14] Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37 (1991) 61-74. | Zbl
,[15] BSDEs with a random terminal time driven by a monotone generator and their links with PDEs. Stoch. Stoch. Rep. 76 (2004) 281-307. | Zbl
,- Stability of backward stochastic differential equations: the general Lipschitz case, Electronic Journal of Probability, Volume 28 (2023) no. none | DOI:10.1214/23-ejp939
- Numerical methods for backward stochastic differential equations: A survey, Probability Surveys, Volume 20 (2023) no. none | DOI:10.1214/23-ps18
- Mean square rate of convergence for random walk approximation of forward-backward SDEs, Advances in Applied Probability, Volume 52 (2020) no. 3, p. 735 | DOI:10.1017/apr.2020.17
- A framework of BSDEs with stochastic Lipschitz coefficients, ESAIM: Probability and Statistics, Volume 24 (2020), p. 739 | DOI:10.1051/ps/2020016
- BSDEs of counterparty risk, Stochastic Processes and their Applications, Volume 125 (2015) no. 8, p. 3023 | DOI:10.1016/j.spa.2015.02.010
- BS
Es and BSDEs with non-Lipschitz drivers: Comparison, convergence and robustness, Bernoulli, Volume 19 (2013) no. 3 | DOI:10.3150/12-bej445 - Corrigendum to “Stability of solutions of BSDEs with random terminal time”, ESAIM: Probability and Statistics, Volume 11 (2007), p. 381 | DOI:10.1051/ps:2007025
- Dynamic Security Design: Convergence to Continuous Time and Asset Pricing Implications, Review of Economic Studies, Volume 74 (2007) no. 2, p. 345 | DOI:10.1111/j.1467-937x.2007.00425.x
Cité par 8 documents. Sources : Crossref