Comparison of order statistics in a random sequence to the same statistics with I.I.D. variables
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 1-10.

The paper is motivated by the stochastic comparison of the reliability of non-repairable k-out-of-n systems. The lifetime of such a system with nonidentical components is compared with the lifetime of a system with identical components. Formally the problem is as follows. Let Ui,i=1,...,n, be positive independent random variables with common distribution F. For λi>0 and μ>0, let consider Xi=Ui/λi and Yi=Ui/μ,i=1,...,n. Remark that this is no more than a change of scale for each term. For k{1,2,...,n}, let us define Xk:n to be the kth order statistics of the random variables X1,...,Xn, and similarly Yk:n to be the kth order statistics of Y1,...,Yn. If Xi,i=1,...,n, are the lifetimes of the components of a n+1-k-out-of-n non-repairable system, then Xk:n is the lifetime of the system. In this paper, we give for a fixed k a sufficient condition for Xk:nstYk:n where st is the usual ordering for distributions. In the markovian case (all components have an exponential lifetime), we give a necessary and sufficient condition. We prove that Xk:n is greater that Yk:n according to the usual stochastic ordering if and only if

nkμk1i1<i2<...<iknλi1λi2...λik.

DOI : 10.1051/ps:2005020
Classification : 60E15, 62N05, 62G30, 90B25, 60J27
Mots-clés : stochastic ordering, Markov system, order statistics, k-out-of-n
@article{PS_2006__10__1_0,
     author = {Bon, Jean-Louis and P\u{a}lt\u{a}nea, Eugen},
     title = {Comparison of order statistics in a random sequence to the same statistics with {I.I.D.} variables},
     journal = {ESAIM: Probability and Statistics},
     pages = {1--10},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2005020},
     mrnumber = {2188345},
     language = {en},
     url = {https://numdam.org/articles/10.1051/ps:2005020/}
}
TY  - JOUR
AU  - Bon, Jean-Louis
AU  - Păltănea, Eugen
TI  - Comparison of order statistics in a random sequence to the same statistics with I.I.D. variables
JO  - ESAIM: Probability and Statistics
PY  - 2006
SP  - 1
EP  - 10
VL  - 10
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/ps:2005020/
DO  - 10.1051/ps:2005020
LA  - en
ID  - PS_2006__10__1_0
ER  - 
%0 Journal Article
%A Bon, Jean-Louis
%A Păltănea, Eugen
%T Comparison of order statistics in a random sequence to the same statistics with I.I.D. variables
%J ESAIM: Probability and Statistics
%D 2006
%P 1-10
%V 10
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/ps:2005020/
%R 10.1051/ps:2005020
%G en
%F PS_2006__10__1_0
Bon, Jean-Louis; Păltănea, Eugen. Comparison of order statistics in a random sequence to the same statistics with I.I.D. variables. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 1-10. doi : 10.1051/ps:2005020. https://numdam.org/articles/10.1051/ps:2005020/

[1] J.-L. Bon and E. Păltănea, Ordering properties of convolutions of exponential random variables. Lifetime Data Anal. 5 (1999) 185-192. | Zbl

[2] G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge University Press, Cambridge (1934). | JFM | Zbl

[3] B.-E. Khaledi and S. Kochar, Some new results on stochastic comparisons of parallel systems. J. Appl. Probab. 37 (2000) 1123-1128. | Zbl

[4] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications. Academic Press, New York (1979). | MR | Zbl

[5] E. Păltănea. A note of stochastic comparison of fail-safe Markov systems2003) 179-182.

[6] P. Pledger and F. Proschan, Comparisons of order statistics and spacing from heterogeneous distributions, in Optimizing Methods in Statistics. Academic Press, New York (1971) 89-113. | Zbl

[7] M. Shaked and J.G. Shanthikumar, Stochastic Orders and Their Applications. Academic Press, New York (1994). | MR | Zbl

  • Masoumifard, Khaled; Haidari, Abedin; Torrado, Nuria Hazard Rate Order Between Parallel Systems With Multiple Types of Scaled Components, Applied Stochastic Models in Business and Industry, Volume 41 (2025) no. 2 | DOI:10.1002/asmb.70008
  • Zhang, Yiying; Hu, Yanni; Zhao, Peng Ordering Results on Largest Order Statistics from Multiple-Outlier Gamma Variables, Communications in Mathematics and Statistics, Volume 11 (2023) no. 2, p. 257 | DOI:10.1007/s40304-021-00247-6
  • Barmalzan, Ghobad; Kosari, Sajad; Hosseinzadeh, Ali Akbar; Balakrishnan, Narayanaswamy Likelihood ratio and dispersive orders of parallel and series systems consisting of dependent multiple-outlier components, Communications in Statistics - Theory and Methods, Volume 52 (2023) no. 19, p. 6695 | DOI:10.1080/03610926.2022.2032751
  • Stein, Michael L. A weighted composite log-likelihood approach to parametric estimation of the extreme quantiles of a distribution, Extremes, Volume 26 (2023) no. 3, p. 469 | DOI:10.1007/s10687-023-00466-w
  • Affouf, Mahmoud; Wang, Jiantian Answer to an open problem about stochastic comparison of parallel systems with geometric components, Operations Research Letters, Volume 51 (2023) no. 2, p. 176 | DOI:10.1016/j.orl.2023.02.001
  • Sahoo, Tanmay; Hazra, Nil Kamal Ordering and aging properties of systems with dependent components governed by the Archimedean copula, Probability in the Engineering and Informational Sciences, Volume 37 (2023) no. 1, p. 1 | DOI:10.1017/s0269964821000425
  • Barmalzan, Ghobad; Hosseinzadeh, Ali Akbar; Balakrishnan, Narayanaswamy Dispersion and variability orders of mixture exponential distributions and their sample spacings, and some associated characterizations, Communications in Statistics - Theory and Methods, Volume 51 (2022) no. 24, p. 8657 | DOI:10.1080/03610926.2021.1901925
  • Kochar, Subhash C. Stochastic Comparisons of Order Statistics, Stochastic Comparisons with Applications (2022), p. 139 | DOI:10.1007/978-3-031-12104-3_6
  • Yu, Yaming ON STOCHASTIC COMPARISONS OF ORDER STATISTICS FROM HETEROGENEOUS EXPONENTIAL SAMPLES, Probability in the Engineering and Informational Sciences, Volume 35 (2021) no. 3, p. 532 | DOI:10.1017/s026996481900041x
  • Zhang, Ting; Zhang, Yiying; Zhao, Peng COMPARISONS ON LARGEST ORDER STATISTICS FROM HETEROGENEOUS GAMMA SAMPLES, Probability in the Engineering and Informational Sciences, Volume 35 (2021) no. 3, p. 611 | DOI:10.1017/s0269964820000108
  • Li, Lu; Wu, Qinyu; Mao, Tiantian Stochastic comparisons of largest-order statistics for proportional reversed hazard rate model and applications, Journal of Applied Probability, Volume 57 (2020) no. 3, p. 832 | DOI:10.1017/jpr.2020.40
  • Bhattacharyya, Dhrubasish; Khan, Ruhul Ali; Mitra, Murari Stochastic comparisons of series, parallel and k-out-of-n systems with heterogeneous bathtub failure rate type components, Physica A: Statistical Mechanics and its Applications, Volume 540 (2020), p. 123124 | DOI:10.1016/j.physa.2019.123124
  • Kundu, Pradip; Hazra, Nil Kamal; Nanda, Asok K. Reliability study of series and parallel systems of heterogeneous component lifetimes following proportional odds model, Statistics, Volume 54 (2020) no. 2, p. 375 | DOI:10.1080/02331888.2020.1722670
  • Zhang, Yiying; Amini‐Seresht, Ebrahim; Zhao, Peng On fail‐safe systems under random shocks, Applied Stochastic Models in Business and Industry, Volume 35 (2019) no. 3, p. 591 | DOI:10.1002/asmb.2349
  • Haidari, Abedin; Payandeh Najafabadi, Amir T. CHARACTERIZATION ORDERING RESULTS FOR LARGEST ORDER STATISTICS FROM HETEROGENEOUS AND HOMOGENEOUS EXPONENTIATED GENERALIZED GAMMA VARIABLES, Probability in the Engineering and Informational Sciences, Volume 33 (2019) no. 3, p. 460 | DOI:10.1017/s0269964818000220
  • Balakrishnan, Narayanaswamy; Barmalzan, Ghobad; Haidari, Abedin; Najafabadi, Amir T. Payandeh Necessary and sufficient conditions for stochastic orders between (n − r + 1)-out-of-n systems in proportional hazard (reversed hazard) rates model, Communications in Statistics - Theory and Methods, Volume 47 (2018) no. 23, p. 5854 | DOI:10.1080/03610926.2017.1406517
  • Balakrishnan, Narayanaswamy; Barmalzan, Ghobad; Haidari, Abedin On stochastic comparisons ofk-out-of-nsystems with Weibull components, Journal of Applied Probability, Volume 55 (2018) no. 1, p. 216 | DOI:10.1017/jpr.2018.14
  • Balakrishnan, Narayanaswamy; Barmalzan, Ghobad; Haidari, Abedin Modified proportional hazard rates and proportional reversed hazard rates models via Marshall–Olkin distribution and some stochastic comparisons, Journal of the Korean Statistical Society, Volume 47 (2018) no. 1, p. 127 | DOI:10.1016/j.jkss.2017.10.003
  • Hazra, Nil Kamal; Kuiti, Mithu Rani; Finkelstein, Maxim; Nanda, Asok K. On stochastic comparisons of minimum order statistics from the location–scale family of distributions, Metrika, Volume 81 (2018) no. 2, p. 105 | DOI:10.1007/s00184-017-0636-x
  • Wang, Jiantian LIKELIHOOD RATIO ORDERING OF PARALLEL SYSTEMS WITH HETEROGENEOUS SCALED COMPONENTS, Probability in the Engineering and Informational Sciences, Volume 32 (2018) no. 3, p. 460 | DOI:10.1017/s0269964817000249
  • Zhang, Yiying; Zhao, Peng On the maxima of heterogeneous gamma variables, Communications in Statistics - Theory and Methods, Volume 46 (2017) no. 10, p. 5056 | DOI:10.1080/03610926.2015.1091084
  • Zhao, Peng; Wang, Lei; Zhang, Yiying On extreme order statistics from heterogeneous beta distributions with applications, Communications in Statistics - Theory and Methods, Volume 46 (2017) no. 14, p. 7020 | DOI:10.1080/03610926.2016.1143007
  • Hazra, Nil Kamal; Kuiti, Mithu Rani; Finkelstein, Maxim; Nanda, Asok K. On stochastic comparisons of maximum order statistics from the location-scale family of distributions, Journal of Multivariate Analysis, Volume 160 (2017), p. 31 | DOI:10.1016/j.jmva.2017.06.001
  • Balakrishnan, Narayanaswamy; Barmalzan, Ghobad; Haidari, Abedin Ordering Results for Order Statistics from Two Heterogeneous Marshall-Olkin Generalized Exponential Distributions, Sankhya B (2017) | DOI:10.1007/s13571-017-0141-2
  • Cai, Xiong; Zhang, Yiying; Zhao, Peng Hazard rate ordering of the second-order statistics from multiple-outlier PHR samples, Statistics, Volume 51 (2017) no. 3, p. 615 | DOI:10.1080/02331888.2016.1265969
  • Torrado, Nuria Stochastic comparisons between extreme order statistics from scale models, Statistics, Volume 51 (2017) no. 6, p. 1359 | DOI:10.1080/02331888.2017.1316505
  • Fang, Longxiang; Balakrishnan, N. Likelihood ratio order of parallel systems with heterogeneous Weibull components, Metrika, Volume 79 (2016) no. 6, p. 693 | DOI:10.1007/s00184-015-0573-5
  • Fang, Rui; Li, Chen; Li, Xiaohu Stochastic comparisons on sample extremes of dependent and heterogenous observations, Statistics, Volume 50 (2016) no. 4, p. 930 | DOI:10.1080/02331888.2015.1119151
  • Zhao, Peng; Zhang, Yiying; Qiao, Jianfei On extreme order statistics from heterogeneous Weibull variables, Statistics, Volume 50 (2016) no. 6, p. 1376 | DOI:10.1080/02331888.2016.1230859
  • Balakrishnan, N.; Haidari, Abedin; Barmalzan, Ghobad Improved Ordering Results for Fail-Safe Systems with Exponential Components, Communications in Statistics - Theory and Methods, Volume 44 (2015) no. 10, p. 2010 | DOI:10.1080/03610926.2012.755204
  • Zhao, Peng; Balakrishnan, N. Comparisons of Largest Order Statistics from Multiple-outlier Gamma Models, Methodology and Computing in Applied Probability, Volume 17 (2015) no. 3, p. 617 | DOI:10.1007/s11009-013-9377-0
  • Gupta, Nitin; Patra, Lakshmi Kanta; Kumar, Somesh Stochastic comparisons in systems with Frèchet distributed components, Operations Research Letters, Volume 43 (2015) no. 6, p. 612 | DOI:10.1016/j.orl.2015.09.009
  • Zhao, Peng; Hu, Yanni; Zhang, Yiying SOME NEW RESULTS ON THE LARGEST ORDER STATISTICS FROM MULTIPLE-OUTLIER GAMMA MODELS, Probability in the Engineering and Informational Sciences, Volume 29 (2015) no. 4, p. 597 | DOI:10.1017/s0269964815000212
  • Wang, Jiantian A stochastic comparison result about hazard rate ordering of two parallel systems comprising of geometric components, Statistics Probability Letters, Volume 106 (2015), p. 86 | DOI:10.1016/j.spl.2015.07.006
  • Kochar, Subhash; Xu, Maochao On the skewness of order statistics with applications, Annals of Operations Research, Volume 212 (2014) no. 1, p. 127 | DOI:10.1007/s10479-012-1212-4
  • Zhao, Peng; Su, Feng On maximum order statistics from heterogeneous geometric variables, Annals of Operations Research, Volume 212 (2014) no. 1, p. 215 | DOI:10.1007/s10479-012-1158-6
  • Da, Gaofeng; Xu, Maochao; Balakrishnan, N. On the Lorenz ordering of order statistics from exponential populations and some applications, Journal of Multivariate Analysis, Volume 127 (2014), p. 88 | DOI:10.1016/j.jmva.2014.02.005
  • Zhao, Peng; Balakrishnan, N. A stochastic inequality for the largest order statistics from heterogeneous gamma variables, Journal of Multivariate Analysis, Volume 129 (2014), p. 145 | DOI:10.1016/j.jmva.2014.04.003
  • Zhao, Peng; Zhang, Yiying On the maxima of heterogeneous gamma variables with different shape and scale parameters, Metrika, Volume 77 (2014) no. 6, p. 811 | DOI:10.1007/s00184-013-0466-4
  • Ding, Weiyong; Da, Gaofeng; Li, Xiaohu COMPARISONS OF SERIES AND PARALLEL SYSTEMS WITH HETEROGENEOUS COMPONENTS, Probability in the Engineering and Informational Sciences, Volume 28 (2014) no. 1, p. 39 | DOI:10.1017/s0269964813000314
  • Zhao, Peng; Balakrishnan, N. On the right spread ordering of parallel systems with two heterogeneous components, Statistics, Volume 48 (2014) no. 2, p. 447 | DOI:10.1080/02331888.2012.719516
  • Balakrishnan, N.; Zhao, Peng Hazard rate comparison of parallel systems with heterogeneous gamma components, Journal of Multivariate Analysis, Volume 113 (2013), p. 153 | DOI:10.1016/j.jmva.2011.05.001
  • Balakrishnan, N.; Zhao, Peng ORDERING PROPERTIES OF ORDER STATISTICS FROM HETEROGENEOUS POPULATIONS: A REVIEW WITH AN EMPHASIS ON SOME RECENT DEVELOPMENTS, Probability in the Engineering and Informational Sciences, Volume 27 (2013) no. 4, p. 403 | DOI:10.1017/s0269964813000156
  • Yan, Rongfang; Da, Gaofeng; Zhao, Peng Further results for parallel systems with two heterogeneous exponential components, Statistics, Volume 47 (2013) no. 5, p. 1128 | DOI:10.1080/02331888.2012.704632
  • Ding, Weiyong; Zhang, Yiying; Zhao, Peng Comparisons of -out-of- systems with heterogenous components, Statistics Probability Letters, Volume 83 (2013) no. 2, p. 493 | DOI:10.1016/j.spl.2012.10.012
  • Fang, Longxiang; Zhang, Xinsheng Stochastic comparisons of series systems with heterogeneous Weibull components, Statistics Probability Letters, Volume 83 (2013) no. 7, p. 1649 | DOI:10.1016/j.spl.2013.03.012
  • Kochar, Subhash Stochastic Comparisons of Order Statistics and Spacings: A Review, ISRN Probability and Statistics, Volume 2012 (2012), p. 1 | DOI:10.5402/2012/839473
  • Ding, Weiyong; Li, Xiaohu The optimal allocation of active redundancies to k-out-of-n systems with respect to hazard rate ordering, Journal of Statistical Planning and Inference, Volume 142 (2012) no. 7, p. 1878 | DOI:10.1016/j.jspi.2012.02.025
  • Torrado, Nuria; Veerman, J.J.P. Asymptotic reliability theory of k-out-of-n systems, Journal of Statistical Planning and Inference, Volume 142 (2012) no. 9, p. 2646 | DOI:10.1016/j.jspi.2012.03.015
  • Ding, Weiyong; Li, Xiaohu; Balakrishnan, Narayanaswamy MONOTONICITY PROPERTIES OF RESIDUAL LIFETIMES OF PARALLEL SYSTEMS AND INACTIVITY TIMES OF SERIES SYSTEMS WITH HETEROGENEOUS COMPONENTS, Probability in the Engineering and Informational Sciences, Volume 26 (2012) no. 1, p. 61 | DOI:10.1017/s0269964811000234
  • Zhao, Peng; Balakrishnan, N. STOCHASTIC COMPARISONS OF LARGEST ORDER STATISTICS FROM MULTIPLE-OUTLIER EXPONENTIAL MODELS, Probability in the Engineering and Informational Sciences, Volume 26 (2012) no. 2, p. 159 | DOI:10.1017/s0269964811000313
  • Du, Baojun; Zhao, Peng; Balakrishnan, N. LIKELIHOOD RATIO AND HAZARD RATE ORDERINGS OF THE MAXIMA IN TWO MULTIPLE-OUTLIER GEOMETRIC SAMPLES, Probability in the Engineering and Informational Sciences, Volume 26 (2012) no. 3, p. 375 | DOI:10.1017/s026996481200006x
  • Kochar, Subhash; Xu, Maochao Stochastic Comparisons of Spacings from Heterogeneous Samples, Advances in Directional and Linear Statistics (2011), p. 113 | DOI:10.1007/978-3-7908-2628-9_8
  • Zhao, Peng; Li, Xiaohu; Da, Gaofeng Right Spread Order of the Second-Order Statistic from Heterogeneous Exponential Random Variables, Communications in Statistics - Theory and Methods, Volume 40 (2011) no. 17, p. 3070 | DOI:10.1080/03610926.2010.493277
  • Kochar, Subhash; Xu, Maochao On the Skewness of Order Statistics in Multiple-Outlier Models, Journal of Applied Probability, Volume 48 (2011) no. 01, p. 271 | DOI:10.1017/s0021900200007762
  • Kochar, Subhash; Xu, Maochao On the Skewness of Order Statistics in Multiple-Outlier Models, Journal of Applied Probability, Volume 48 (2011) no. 1, p. 271 | DOI:10.1239/jap/1300198149
  • Păltănea, Eugen Bounds for mixtures of order statistics from exponentials and applications, Journal of Multivariate Analysis, Volume 102 (2011) no. 5, p. 896 | DOI:10.1016/j.jmva.2011.01.006
  • Khaledi, Baha-Eldin; Farsinezhad, Sepideh; Kochar, Subhash C. Stochastic comparisons of order statistics in the scale model, Journal of Statistical Planning and Inference, Volume 141 (2011) no. 1, p. 276 | DOI:10.1016/j.jspi.2010.06.006
  • Zhao, Peng; Balakrishnan, N. MRL ordering of parallel systems with two heterogeneous components, Journal of Statistical Planning and Inference, Volume 141 (2011) no. 2, p. 631 | DOI:10.1016/j.jspi.2010.07.013
  • Zhao, Peng; Balakrishnan, N. Dispersive ordering of fail-safe systems with heterogeneous exponential components, Metrika, Volume 74 (2011) no. 2, p. 203 | DOI:10.1007/s00184-010-0297-5
  • Zhao, Peng ON PARALLEL SYSTEMS WITH HETEROGENEOUS GAMMA COMPONENTS, Probability in the Engineering and Informational Sciences, Volume 25 (2011) no. 3, p. 369 | DOI:10.1017/s0269964811000064
  • Zhao, Peng; Balakrishnan, N. Some characterization results for parallel systems with two heterogeneous exponential components, Statistics, Volume 45 (2011) no. 6, p. 593 | DOI:10.1080/02331888.2010.485276
  • Zhao, Peng; Balakrishnan, N. New results on comparisons of parallel systems with heterogeneous gamma components, Statistics Probability Letters, Volume 81 (2011) no. 1, p. 36 | DOI:10.1016/j.spl.2010.09.016
  • Mao, Tiantian; Hu, Taizhong EQUIVALENT CHARACTERIZATIONS ON ORDERINGS OF ORDER STATISTICS AND SAMPLE RANGES, Probability in the Engineering and Informational Sciences, Volume 24 (2010) no. 2, p. 245 | DOI:10.1017/s0269964809990258
  • Mao, Tiantian; Hu, Taizhong; Zhao, Peng ORDERING CONVOLUTIONS OF HETEROGENEOUS EXPONENTIAL AND GEOMETRIC DISTRIBUTIONS REVISITED, Probability in the Engineering and Informational Sciences, Volume 24 (2010) no. 3, p. 329 | DOI:10.1017/s026996481000001x
  • Zhao, Peng; Li, Xiaohu; Balakrishnan, N. Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables, Journal of Multivariate Analysis, Volume 100 (2009) no. 5, p. 952 | DOI:10.1016/j.jmva.2008.09.010
  • Zhao, Peng; Balakrishnan, N. Characterization of MRL order of fail-safe systems with heterogeneous exponential components, Journal of Statistical Planning and Inference, Volume 139 (2009) no. 9, p. 3027 | DOI:10.1016/j.jspi.2009.02.006
  • Zhao, Peng; Li, Xiaohu STOCHASTIC ORDER OF SAMPLE RANGE FROM HETEROGENEOUS EXPONENTIAL RANDOM VARIABLES, Probability in the Engineering and Informational Sciences, Volume 23 (2009) no. 1, p. 17 | DOI:10.1017/s0269964809000023
  • Păltănea, Eugen On the comparison in hazard rate ordering of fail-safe systems, Journal of Statistical Planning and Inference, Volume 138 (2008) no. 7, p. 1993 | DOI:10.1016/j.jspi.2007.08.001

Cité par 69 documents. Sources : Crossref