In the problem of signal detection in gaussian white noise we show asymptotic minimaxity of kernel-based tests. The test statistics equal
Mots-clés : nonparametric hypothesis testing, kernel-based tests, goodness-of-fit tests, efficiency, asymptotic minimaxity, kernel estimator
@article{PS_2003__7__279_0, author = {Ermakov, Michael}, title = {On asymptotic minimaxity of kernel-based tests}, journal = {ESAIM: Probability and Statistics}, pages = {279--312}, publisher = {EDP-Sciences}, volume = {7}, year = {2003}, doi = {10.1051/ps:2003013}, mrnumber = {1987790}, zbl = {1013.62050}, language = {en}, url = {https://numdam.org/articles/10.1051/ps:2003013/} }
Ermakov, Michael. On asymptotic minimaxity of kernel-based tests. ESAIM: Probability and Statistics, Tome 7 (2003), pp. 279-312. doi : 10.1051/ps:2003013. https://numdam.org/articles/10.1051/ps:2003013/
[1] On Some Global Measures of Deviation of Density Function Estimates. Ann. Statist. 1 (1973) 1071-1095. | MR | Zbl
and ,[2] Efficient and Adaptive Estimation for the Semiparametric Models. John Hopkins University Press, Baltimore (1993). | MR | Zbl
, , and ,[3] Martingale Central Limit Theorems. Ann. Math. Statist. 42 (1971) 59-66. | MR | Zbl
,[4] Asymptotic Equivalence of Nonparametric Regression and White Noise. Ann. Statist. 24 (1996) 2384-2398. | MR | Zbl
and ,[5] On the Minimax Detection of an Inaccurately Known Signal in a White Gaussian Noise. Theory Probab. Appl. 24 (1979) 107-119. | MR | Zbl
,[6] Statistical Decision Rules and Optimal Inference. Moskow, Nauka (1972). | MR
,[7] Minimax Detection of a Signal in Gaussian White Noise. Theory Probab. Appl. 35 (1990) 667-679. | MR | Zbl
,[8] On Asymptotic Minimaxity of Rank Tests. Statist. Probab. Lett. 15 (1992) 191-196. | MR | Zbl
,[9] Minimax Nonparametric Testing Hypotheses on a Density Function. Theory Probab. Appl. 39 (1994) 396-416. | MR | Zbl
,[10] Asymptotic Minimaxity of Tests of Kolmogorov and Omega-squared Types. Theory Probab. Appl. 40 (1995) 54-67. | MR | Zbl
,[11] Asymptotic Minimaxity of Chi-squared Tests. Theory Probab. Appl. 42 (1997) 668-695. | MR | Zbl
,[12] On Distinquishability of Two Nonparametric Sets of Hypotheses. Statist. Probab. Lett. 48 (2000) 275-282. | MR | Zbl
,[13] Testing Goodness of Fit of a Parametric Density Function by Kernel Method. Econometric Theory 10 (1994) 316-356. | MR
,[14] Minimax Rates for Nonparametric Specification Testing in Regression Models, Working Paper. Toulouse University of Social Sciences, Toulouse, France (1999).
and ,[15] Zbl
and Wei-Mion Huang, The Power and Optimal Kernel of the Bickel-Rosenblatt Test for Goodness of Fit. Ann. Statist. 19 (1991) 999-1009. |[16] Integrated Square Error Properties of Kernel Estimators of Regression Function. Ann. Statist. 12 (1984) 241-260. | MR | Zbl
,[17] Central Limit Theorem for Integrated Square Error of Multivariate Nonparametric Density Estimators. J. Multivar. Anal. 14 (1984) 1-16. | MR | Zbl
,[18] Applied Nonparametric Regression. Cambridge University Press, Cambridge (1989). | MR | Zbl
,[19] Nonparametric Smoothing and Lack-of-fit Tests. Springer-Verlag, New York (1997). | MR | Zbl
,[20] Adaptive, Rate-optimal Test of Parametric Model against a Nonparametric Alternative, Vol. 542, Preprint. Weierstrass-Institute of Applied Analysis and Stochastic, Berlin (1999).
and ,
[21] Minimax Detection of Signal in
[22] Minimax Detection of Signals for Besov Balls and Bodies. Probl. Inform. Transm. 34 (1998) 56-68. | MR | Zbl
and ,[23] Nonparametric Goodness-of-Fit Testing under Gaussian Model. Springer-Verlag, New York, Lecture Notes in Statist. 169. | MR | Zbl
and ,[24] On a Global Measure of Deviation for an Estimate of the Regression Line. Theor. Probab. Appl. 22 (1977) 858-868. | MR | Zbl
,[25] Minimax Nonparametric Hypothesis Testing: The Case of an Inhomogeneous Alternative. Bernoulli 5 (1999) 333-358. | MR | Zbl
and ,[26] Gaussian Random Functions. TViMS Kiev (1995). | MR | Zbl
,[27] Asymptotic Equivalence of Density Estimation and Gaussian White Noise. Ann. Statist. 24 (1996) 2399-2430. | MR | Zbl
,[28] Asymptotic Methods in Theory of Gaussian Proceses and Fields. Moskow University, Moskow (1988).
,[29] Smooth Tests of Goodness of Fit. Oxford University Press, New York (1989). | MR | Zbl
and ,[30] The One-sided Barrier Problem for Gaussian Noise. Bell System Tech. J. 41 (1962) 463-501. | MR
,[31] Adaptive Hypothesis Testing using Wavelets. Ann. Statist. 24 (1996) 2477-2498. | MR | Zbl
,[32] Efficient Nonparametric Testing and Estimation, in Third Berkeley Symp. Math. Statist. and Probab, Vol. 1. Univ. California Press, Berkeley (1956) 187-195. | MR | Zbl
,[33] Nonparametric Model Checks for Regression. Ann. Statist. 25 (1997) 613-641. | MR | Zbl
,Cité par Sources :