We consider the linear elliptic equation
Mots-clés : Stochastic PDEs, lognormal coefficients, n-term approximation, Hermite polynomials
@article{M2AN_2017__51_1_341_0, author = {Bachmayr, Markus and Cohen, Albert and DeVore, Ronald and Migliorati, Giovanni}, title = {Sparse polynomial approximation of parametric elliptic {PDEs.} {Part} {II:} lognormal coefficients}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {341--363}, publisher = {EDP-Sciences}, volume = {51}, number = {1}, year = {2017}, doi = {10.1051/m2an/2016051}, mrnumber = {3601011}, zbl = {1366.41005}, language = {en}, url = {https://numdam.org/articles/10.1051/m2an/2016051/} }
TY - JOUR AU - Bachmayr, Markus AU - Cohen, Albert AU - DeVore, Ronald AU - Migliorati, Giovanni TI - Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2017 SP - 341 EP - 363 VL - 51 IS - 1 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/m2an/2016051/ DO - 10.1051/m2an/2016051 LA - en ID - M2AN_2017__51_1_341_0 ER -
%0 Journal Article %A Bachmayr, Markus %A Cohen, Albert %A DeVore, Ronald %A Migliorati, Giovanni %T Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2017 %P 341-363 %V 51 %N 1 %I EDP-Sciences %U https://numdam.org/articles/10.1051/m2an/2016051/ %R 10.1051/m2an/2016051 %G en %F M2AN_2017__51_1_341_0
Bachmayr, Markus; Cohen, Albert; DeVore, Ronald; Migliorati, Giovanni. Sparse polynomial approximation of parametric elliptic PDEs. Part II: lognormal coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 51 (2017) no. 1, pp. 341-363. doi : 10.1051/m2an/2016051. https://numdam.org/articles/10.1051/m2an/2016051/
A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034. | DOI | MR | Zbl
, and ,Sparse polynomial approximation of parametric elliptic PDEs. Part I: Affine coefficients, ESAIM: M2AN 51 (2017) 321–339. | DOI | Numdam | MR | Zbl
, and ,On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22 (2012) 1–33. | DOI | MR | Zbl
, , and ,Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67 (2014) 732–751. | DOI | MR | Zbl
, , and ,Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012) 216–246. | DOI | MR | Zbl
,Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. | DOI | MR | Zbl
, and ,A. Cohen, Numerical analysis of wavelet methods, Studies in Mathematics and its Applications. Elsevier, Amsterdam (2003). | MR | Zbl
Approximation of high-dimensional parametric PDEs. Acta Numer. 24 (2015) 1–159. | DOI | MR | Zbl
and ,Analytic regularity and polynomial approximation of parametric and stochastic PDEs. Anal. Appl. 9 (2011) 11–47. | DOI | MR | Zbl
, and ,M. Dashti and A.M. Stuart, The Bayesian Approach to Inverse Problems. Handbook of Uncertainty Quantification, edited by R. Ghanem, D. Higdon and H. Owhadi. Springer (2015).
Nonlinear Approximation, Acta Numer. 7 (1998) 51–150. | DOI | MR | Zbl
,O. Ernst and B. Sprungk, Stochastic Collocation for Elliptic PDEs with Random Data: The Lognormal Case, in Sparse Grids and Applications – Munich (2012), edited by J. Garcke and D. Pflüger. Vol. 97 of Lect. Notes Comput. Sci. Eng. Springer International Publishing Switzerland (2014). | MR
Approximating infinity-dimensional stochastic Darcy’s equations without uniform ellipticity. SIAM J. Numer. Anal. 47 (2009) 3624–3651. | DOI | MR | Zbl
and ,Spectral techniques for stochastic finite elements. Arch. Comput. Methods Engrg. 4 (1997) 63–100. | DOI | MR
and ,R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, 2nd edition, Dover (2007). | MR | Zbl
Stochastic Galerkin discretization of the log-normal isotropic diffusion problem. Math. Models Methods Appl. Sci. 20 (2010) 237–263. | DOI | MR | Zbl
,Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer. Math. 131 (2015) 329–368. | DOI | MR | Zbl
, , , , and ,M. Hairer, An Introduction to Stochastic PDEs. Lecture notes. Available at http://www.hairer.org (2009).
O. Knio and O. Le Maitre, Spectral Methods for Uncertainty Quantication: With Applications to Computational Fluid Dynamics. Springer (2010). | MR | Zbl
F.Y. Kuo, R. Scheichl, Ch. Schwab, I.H. Sloan and E. Ullmann, Multilevel Quasi-Monte Carlo Methods for Lognormal Diffusion Problems, , to appear in Math. of Comp. (2015). | arXiv | MR
On the convergence of the stochastic Galerkin methods for random elliptic partial differential equations. ESAIM: M2AN 47 (2013) 1237–1263. | DOI | Numdam | MR | Zbl
and ,D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press (2010). | MR | Zbl
Cité par Sources :