For an arbitrary category, we consider the least class of functors containing the projections and closed under finite products, finite coproducts, parameterized initial algebras and parameterized final coalgebras, i.e. the class of functors that are definable by
Mots-clés : parity games, bicomplete categories, initial algebras, final coalgebras, inductive and coinductive types
@article{ITA_2002__36_2_195_0, author = {Santocanale, Luigi}, title = {$\mu $-bicomplete categories and parity games}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {195--227}, publisher = {EDP-Sciences}, volume = {36}, number = {2}, year = {2002}, doi = {10.1051/ita:2002010}, mrnumber = {1948769}, zbl = {1024.18001}, language = {en}, url = {https://numdam.org/articles/10.1051/ita:2002010/} }
TY - JOUR AU - Santocanale, Luigi TI - $\mu $-bicomplete categories and parity games JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2002 SP - 195 EP - 227 VL - 36 IS - 2 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ita:2002010/ DO - 10.1051/ita:2002010 LA - en ID - ITA_2002__36_2_195_0 ER -
%0 Journal Article %A Santocanale, Luigi %T $\mu $-bicomplete categories and parity games %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2002 %P 195-227 %V 36 %N 2 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ita:2002010/ %R 10.1051/ita:2002010 %G en %F ITA_2002__36_2_195_0
Santocanale, Luigi. $\mu $-bicomplete categories and parity games. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) no. 2, pp. 195-227. doi : 10.1051/ita:2002010. https://numdam.org/articles/10.1051/ita:2002010/
[1] Non-well-founded sets. Stanford University Center for the Study of Language and Information, Stanford, CA (1988). | MR | Zbl
,[2] A coalgebraic view of infinite trees and iteration, edited by M.L.A. Corradini and U. Montanari. Elsevier Science Publishers, Electron. Notes in Theoret. Comput. Sci. 44 (2001).
, and ,[3] Least fixed point of a functor. J. Comput. System Sci. 19 (1979) 163-178. | MR | Zbl
and ,[4] Locally presentable and accessible categories. Cambridge University Press, Cambridge (1994). | MR | Zbl
and ,[5] Rudiments of mu-calculus. Elsevier, North-Holland, Stud. Logic Found. Math. 146 (2001). | MR | Zbl
and ,[6] Terminal coalgebras in well-founded set theory. Theoret. Comput. Sci. 114 (1993) 299-315. | MR | Zbl
,[7] Iteration theories. Springer-Verlag, Berlin (1993). The equational logic of iterative processes. | MR | Zbl
and ,[8] Iteration 2-theories. Appl. Categ. Structures 9 (2001) 173-216. | MR | Zbl
, , and ,[9] Strong categorical datatypes. I, in Category theory 1991 (Montreal, PQ, 1991). Providence, RI, Amer. Math. Soc. (1992) 141-169. | MR | Zbl
and ,[10] Strong categorical datatypes. II. A term logic for categorical programming. Theoret. Comput. Sci. 139 (1995) 69-113. | MR | Zbl
and ,[11] About Charity, Yellow Series Report No. 92/480/18. Department of Computer Science, The University of Calgary (1992).
and ,[12] Tree automata, mu-calculus and determinacy (extended abstract), in 32nd Annual Symposium on Foundations of Computer Science. IEEE (1991) 368-377.
and ,
[13] On model checking for the
[14] Equational properties of iteration in algebraically complete categories. Theoret. Comput. Sci. 195 (1998) 61-89. Mathematical foundations of computer science, Cracow (1996). | MR | Zbl
and ,[15] Algebraically complete categories, in Category theory (Como, 1990). Springer, Berlin (1991) 95-104. | MR | Zbl
,[16] A tutorial on recursive types in Coq. Technical Report 0221, INRIA (1998).
,[17] The effective topos, in The L.E.J. Brouwer Centenary Symposium (Noordwijkerhout, 1981). North-Holland, Amsterdam (1982) 165-216. | MR | Zbl
,[18] Free bicomplete categories. C. R. Math. Rep. Acad. Sci. Canada 17 (1995) 219-224. | MR | Zbl
,[19] Free lattices, communication and money games, in Logic and scientific methods (Florence, 1995). Kluwer Acad. Publ., Dordrecht (1997) 29-68. | MR | Zbl
,
[20] Elementary observations on
[21] A fixpoint theorem for complete categories. Math. Z. 103 (1968) 151-161. | MR | Zbl
,[22] Algebraic specification of data types: A synthetic approach. Math. Systems Theory 14 (1981) 97-139. | MR | Zbl
and ,[23] Accessible categories: The foundations of categorical model theory. American Mathematical Society, Providence, RI (1989). | MR | Zbl
and ,[24] Infinite games played on finite graphs. Ann. Pure Appl. Logic 65 (1993) 149-184. | MR | Zbl
,[25] Regular expressions for infinite trees and a standard form of automata, in Computation theory (Zaborów, 1984). Springer, Berlin, Lecture Notes in Comput. Sci. 208 (1985) 157-168. | MR | Zbl
,
[26] Equational
[27] Ensembles libres de chemins dans un graphe. Bull. Soc. Math. France 114 (1986) 135-152. | Numdam | MR | Zbl
,[28] Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249 (2000) 3-80. | MR | Zbl
,
[29] The alternation hierarchy for the theory of
[30] A calculus of circular proofs and its categorical semantics, in FOSSACS02, Foundations of Software Science and Computation Structures. Springer-Verlag, Lecture Notes Comput. Sci. 2303 (2002) 357-371. | MR | Zbl
,
[31] Free
[32] Complete axioms for categorical fixed-point operators, in Proc. of 15th Annual Symposium on Logic in Computer Science (2000) 30-41. | MR
and ,[33] Languages, automata, and logic edited by G. Rozenberg and A. Salomaa. Springer-Verlag, New York, Handbook of Formal Language Theory III (1996). | MR
,[34] Pushdown processes: Games and model-checking. Inform. and Comput. 164 (2001) 234-263. FLOC '96 (New Brunswick, NJ). | Zbl
,[35] Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoret. Comput. Sci. 200 (1998) 135-183. | MR | Zbl
,Cité par Sources :