The well-known expansion of rational integers in an arbitrary integer base different from
Accepté le :
DOI : 10.1051/ita/2016005
Mots-clés : Numerical monoid, digital representation, digital semigroup, Frobenius number
@article{ITA_2016__50_1_67_0, author = {Brunotte, Horst}, title = {Digital semigroups}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, pages = {67--79}, publisher = {EDP-Sciences}, volume = {50}, number = {1}, year = {2016}, doi = {10.1051/ita/2016005}, zbl = {1391.11124}, mrnumber = {3518159}, language = {en}, url = {https://numdam.org/articles/10.1051/ita/2016005/} }
TY - JOUR AU - Brunotte, Horst TI - Digital semigroups JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications PY - 2016 SP - 67 EP - 79 VL - 50 IS - 1 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/ita/2016005/ DO - 10.1051/ita/2016005 LA - en ID - ITA_2016__50_1_67_0 ER -
%0 Journal Article %A Brunotte, Horst %T Digital semigroups %J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications %D 2016 %P 67-79 %V 50 %N 1 %I EDP-Sciences %U https://numdam.org/articles/10.1051/ita/2016005/ %R 10.1051/ita/2016005 %G en %F ITA_2016__50_1_67_0
Brunotte, Horst. Digital semigroups. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Special issue dedicated to the 15th "Journées Montoises d'Informatique Théorique", Tome 50 (2016) no. 1, pp. 67-79. doi : 10.1051/ita/2016005. https://numdam.org/articles/10.1051/ita/2016005/
The semigroup of combinatorial configurations. Semigroup Forum 84 (2012) 91–96. | DOI | MR | Zbl
and ,Negative bases and automata. Discrete Math. Theoret. Comput. Sci. 13 (2011) 75–93. | MR | Zbl
and ,Intorno all’aritmetica dei sistemi numerici a base negativa con particolare riguardo al sistema numerico a base negativo-decimale per lo studio delle sue analogie coll’aritmetica ordinaria (decimale). Giornale di matematiche di Battaglini 23 (1885) 203–221, 367. | JFM
,D.E. Knuth, The Art of Computer Programming. In Vol. 2. Seminumerical algorithms, 3rd edition. Addison-Wesley, Reading, MA (1998). | MR | Zbl
Basic digit sets for radix representation. J. Assoc. Comput. Mach. 29 (1982) 1131–1143. | DOI | MR | Zbl
,Frobenius pseudo-varieties in numerical semigroups. Ann. Mat. Pura Appl. 194 (2015) 275–287. | DOI | MR | Zbl
and ,Sets of positive integers closed under product and the number of decimal digits. J. Number Theory 147 (2015) 1–13. | DOI | MR | Zbl
, and ,Arf numerical semigroups. J. Algebra 276 (2004) 3–12. | DOI | MR | Zbl
, , and ,Linear, non-homogeneous, symmetric patterns and prime power generators in numerical semigroups associated to combinatorial configurations. Semigroup Forum 88 (2014) 11–20. | DOI | MR | Zbl
and ,Cité par Sources :