A note on the number of squares in a partial word with one hole
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 4, pp. 767-774.

A well known result of Fraenkel and Simpson states that the number of distinct squares in a word of length n is bounded by 2n since at each position there are at most two distinct squares whose last occurrence starts. In this paper, we investigate squares in partial words with one hole, or sequences over a finite alphabet that have a “do not know” symbol or “hole”. A square in a partial word over a given alphabet has the form uv where u is compatible with v, and consequently, such square is compatible with a number of words over the alphabet that are squares. Recently, it was shown that for partial words with one hole, there may be more than two squares that have their last occurrence starting at the same position. Here, we prove that if such is the case, then the length of the shortest square is at most half the length of the third shortest square. As a result, we show that the number of distinct squares compatible with factors of a partial word with one hole of length n is bounded by 7n2.

DOI : 10.1051/ita/2009019
Classification : 68R15, 05A05
Mots-clés : combinatorics on words, partial words, squares
@article{ITA_2009__43_4_767_0,
     author = {Blanchet-Sadri, Francine and Merca\c{s}, Robert},
     title = {A note on the number of squares in a partial word with one hole},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {767--774},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/ita/2009019},
     mrnumber = {2589991},
     language = {en},
     url = {https://numdam.org/articles/10.1051/ita/2009019/}
}
TY  - JOUR
AU  - Blanchet-Sadri, Francine
AU  - Mercaş, Robert
TI  - A note on the number of squares in a partial word with one hole
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2009
SP  - 767
EP  - 774
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - https://numdam.org/articles/10.1051/ita/2009019/
DO  - 10.1051/ita/2009019
LA  - en
ID  - ITA_2009__43_4_767_0
ER  - 
%0 Journal Article
%A Blanchet-Sadri, Francine
%A Mercaş, Robert
%T A note on the number of squares in a partial word with one hole
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2009
%P 767-774
%V 43
%N 4
%I EDP-Sciences
%U https://numdam.org/articles/10.1051/ita/2009019/
%R 10.1051/ita/2009019
%G en
%F ITA_2009__43_4_767_0
Blanchet-Sadri, Francine; Mercaş, Robert. A note on the number of squares in a partial word with one hole. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 4, pp. 767-774. doi : 10.1051/ita/2009019. https://numdam.org/articles/10.1051/ita/2009019/

[1] J. Berstel and L. Boasson, Partial words and a theorem of Fine and Wilf. Theoret. Comput. Sci. 218 (1999) 135-141. | MR | Zbl

[2] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press, Boca Raton, FL (2008). | MR

[3] F. Blanchet-Sadri and D.K. Luhmann, Conjugacy on partial words. Theoret. Comput. Sci. 289 (2002) 297-312. | MR | Zbl

[4] F. Blanchet-Sadri, R. Mercaş and G. Scott, Counting distinct squares in partial words, edited by E. Csuhaj-Varju, Z. Esik, AFL 2008, 12th International Conference on Automata and Formal Languages, Balatonfüred, Hungary (2008) 122-133, www.uncg.edu/cmp/research/freeness | MR

[5] F. Blanchet-Sadri, D.D. Blair and R.V. Lewis, Equations on partial words. RAIRO-Theor. Inf. Appl. 43 (2009) 23-39, www.uncg.edu/cmp/research/equations | Numdam | MR | Zbl

[6] A.S. Fraenkel and J. Simpson, How many squares can a string contain? J. Combin. Theory Ser. A 82 (1998) 112-120. | MR | Zbl

[7] L. Ilie, A simple proof that a word of length n has at most 2n distinct squares. J. Combin. Theory Ser. A 112 (2005) 163-164. | MR | Zbl

[8] L. Ilie, A note on the number of squares in a word. Theoret. Comput. Sci. 380 (2007) 373-376. | MR | Zbl

  • Machacek, John Partial words with a unique position starting a square, Information Processing Letters, Volume 145 (2019), p. 44 | DOI:10.1016/j.ipl.2019.01.010
  • Charalampopoulos, Panagiotis; Crochemore, Maxime; Iliopoulos, Costas S.; Kociumaka, Tomasz; Pissis, Solon P.; Radoszewski, Jakub; Rytter, Wojciech; Waleń, Tomasz Efficient enumeration of non-equivalent squares in partial words with few holes, Journal of Combinatorial Optimization, Volume 37 (2019) no. 2, p. 501 | DOI:10.1007/s10878-018-0300-z
  • Vijayachitra, S.; Sasikala, K., THE 11TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS, Volume 2112 (2019), p. 020034 | DOI:10.1063/1.5112219
  • Charalampopoulos, Panagiotis; Crochemore, Maxime; Iliopoulos, Costas S.; Kociumaka, Tomasz; Pissis, Solon P.; Radoszewski, Jakub; Rytter, Wojciech; Waleń, Tomasz Efficient Enumeration of Non-Equivalent Squares in Partial Words with Few Holes, Computing and Combinatorics, Volume 10392 (2017), p. 99 | DOI:10.1007/978-3-319-62389-4_9
  • Blanchet-Sadri, F.; Osborne, S. Constructing Words with High Distinct Square Densities, Electronic Proceedings in Theoretical Computer Science, Volume 252 (2017), p. 71 | DOI:10.4204/eptcs.252.10
  • Blanchet-Sadri, F.; Bodnar, Michelle; Nikkel, Jordan; Quigley, J.D.; Zhang, Xufan Squares and primitivity in partial words, Discrete Applied Mathematics, Volume 185 (2015), p. 26 | DOI:10.1016/j.dam.2014.12.003
  • Christodoulakis, Manolis; Christou, Michalis; Crochemore, Maxime; Iliopoulos, Costas S. On the average number of regularities in a word, Theoretical Computer Science, Volume 525 (2014), p. 3 | DOI:10.1016/j.tcs.2013.10.007
  • Blanchet-Sadri, F.; Jiao, Yang; Machacek, John M.; Quigley, J.D.; Zhang, Xufan Squares in partial words, Theoretical Computer Science, Volume 530 (2014), p. 42 | DOI:10.1016/j.tcs.2014.02.023
  • Blanchet-Sadri, Francine; Jiao, Yang; Machacek, John M. Squares in Binary Partial Words, Developments in Language Theory, Volume 7410 (2012), p. 404 | DOI:10.1007/978-3-642-31653-1_36
  • KÄRKI, TOMI A NEW PROOF OF THE THREE-SQUARES LEMMA FOR PARTIAL WORDS WITH ONE HOLE, International Journal of Foundations of Computer Science, Volume 21 (2010) no. 06, p. 1065 | DOI:10.1142/s0129054110007738

Cité par 10 documents. Sources : Crossref