Let
Mots-clés : Aubry-Mather theory for elliptic problems, corners of the mean average action
@article{COCV_2009__15_1_1_0, author = {Bessi, Ugo}, title = {Aubry sets and the differentiability of the minimal average action in codimension one}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1--48}, publisher = {EDP-Sciences}, volume = {15}, number = {1}, year = {2009}, doi = {10.1051/cocv:2008017}, mrnumber = {2488567}, zbl = {1163.35007}, language = {en}, url = {https://numdam.org/articles/10.1051/cocv:2008017/} }
TY - JOUR AU - Bessi, Ugo TI - Aubry sets and the differentiability of the minimal average action in codimension one JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 1 EP - 48 VL - 15 IS - 1 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/cocv:2008017/ DO - 10.1051/cocv:2008017 LA - en ID - COCV_2009__15_1_1_0 ER -
%0 Journal Article %A Bessi, Ugo %T Aubry sets and the differentiability of the minimal average action in codimension one %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 1-48 %V 15 %N 1 %I EDP-Sciences %U https://numdam.org/articles/10.1051/cocv:2008017/ %R 10.1051/cocv:2008017 %G en %F COCV_2009__15_1_1_0
Bessi, Ugo. Aubry sets and the differentiability of the minimal average action in codimension one. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 1, pp. 1-48. doi : 10.1051/cocv:2008017. https://numdam.org/articles/10.1051/cocv:2008017/
[1] On a long standing conjecture of De Giorgi: symmetry in
[2] The discrete Frenkel-Kontorova model and its extensions. Physica 8D (1983) 381-422.
and ,[3] Differentiability of the stable norm in codimension one. CRAS 333 (2001) 1095-1100. | MR | Zbl
and ,[4] On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989) 95-138. | Numdam | MR | Zbl
,[5] Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. 2 (1994) 49-63. | MR | Zbl
,[6] Optimal mass transportation and Mather theory. J. Eur. Math. Soc. 9 (2007) 85-121. | MR
and ,[7] On the structure of the stable norm of periodic metrics. Math. Res. Lett. 4 (1997) 791-808. | MR | Zbl
, and ,[8] Minimal measures, one-dimensional currents and the Monge-Kantorovich probem. Calc. Var. Partial Differential Equations 27 (2006) 1-23. | MR | Zbl
, and ,[9] Nonlinear Functional Analysis. Springer, Berlin (1985). | MR | Zbl
,[10] Differential Forms and Applications. Springer, Berlin (1994). | MR | Zbl
,[11] An Introduction to the Theory of Numbers. Oxford (1980). | MR | Zbl
and ,[12] Stable norms of surfaces: local structure of the unit ball at rational directions. GAFA 7 (1997) 996-1010. | MR | Zbl
,[13] On Aubry sets and Mather's action functional. Israel J. Math. 134 (2003) 157-171. | MR | Zbl
,[14] Differentiability of the minimal average action as a function of the rotation number. Bol. Soc. Bras. Mat. 21 (1990) 59-70. | MR | Zbl
,[15] Action minimizing invariant measures for positive-definite Lagrangian systems. Math. Zeit. 207 (1991) 169-207. | MR | Zbl
,[16] Variational construction of connecting orbits. Ann. Inst. Fourier 43 (1993) 1349-1386. | Numdam | MR | Zbl
,[17] Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non LinÈaire 3 (1989) 229-272. | Numdam | MR | Zbl
,[18] Vertices of Mather's beta function. Ergodic Theory Dynam. Systems 25 (2005) 949-955. | MR | Zbl
,[19] Mixed states for an Allen-Cahn type equation. Comm. Pure Appl. Math. 56 (2003) 1078-1134. | MR
and ,[20] Strikte Konvexität für Variationsprobleme auf dem n-dimensionalen Torus. Manuscripta Math. 71 (1991) 45-65. | MR | Zbl
,[21] Differentiability properties of the minimal average action. Calc. Var. Partial Differential Equations 3 (1995) 343-384. | MR | Zbl
,[22] Equilibrium form of crystals and the stable norm. Z. angew. Math. Phys. 49 (1998) 919-933. | MR | Zbl
,[23] Crystalline variational problems. BAMS 84 (1978) 568-588. | MR | Zbl
,[24] Partial Differential Equations, Basic Theory Springer, Berlin (1996). | MR | Zbl
,[25] The ergodic theorem. Duke Math. J 5 (1939) 1-18. | JFM | MR
,- A Fathi–Siconolfi theorem for codimension one transport, Journal of Differential Equations, Volume 256 (2014) no. 1, p. 1 | DOI:10.1016/j.jde.2013.07.054
- Plane-Like Minimizers and Differentiability of the Stable Norm, The Journal of Geometric Analysis, Volume 24 (2014) no. 3, p. 1447 | DOI:10.1007/s12220-012-9380-7
- Mañé's conjectures in codimension 1, Communications on Pure and Applied Mathematics, Volume 64 (2011) no. 7, p. 1008 | DOI:10.1002/cpa.20362
Cité par 3 documents. Sources : Crossref