We consider the Laplace operator in a thin tube of
Mots-clés : dimension reduction,
@article{COCV_2007__13_4_793_0, author = {Bouchitt\'e, Guy and Mascarenhas, M. Lu{\'\i}sa and Trabucho, Lu{\'\i}s}, title = {On the curvature and torsion effects in one dimensional waveguides}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {793--808}, publisher = {EDP-Sciences}, volume = {13}, number = {4}, year = {2007}, doi = {10.1051/cocv:2007042}, mrnumber = {2351404}, zbl = {1139.49043}, language = {en}, url = {https://numdam.org/articles/10.1051/cocv:2007042/} }
TY - JOUR AU - Bouchitté, Guy AU - Mascarenhas, M. Luísa AU - Trabucho, Luís TI - On the curvature and torsion effects in one dimensional waveguides JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 793 EP - 808 VL - 13 IS - 4 PB - EDP-Sciences UR - https://numdam.org/articles/10.1051/cocv:2007042/ DO - 10.1051/cocv:2007042 LA - en ID - COCV_2007__13_4_793_0 ER -
%0 Journal Article %A Bouchitté, Guy %A Mascarenhas, M. Luísa %A Trabucho, Luís %T On the curvature and torsion effects in one dimensional waveguides %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 793-808 %V 13 %N 4 %I EDP-Sciences %U https://numdam.org/articles/10.1051/cocv:2007042/ %R 10.1051/cocv:2007042 %G en %F COCV_2007__13_4_793_0
Bouchitté, Guy; Mascarenhas, M. Luísa; Trabucho, Luís. On the curvature and torsion effects in one dimensional waveguides. ESAIM: Control, Optimisation and Calculus of Variations, Tome 13 (2007) no. 4, pp. 793-808. doi : 10.1051/cocv:2007042. https://numdam.org/articles/10.1051/cocv:2007042/
[1] Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 77 (1998) 153-208. | Zbl
and ,[2] Geometrically induced discrete specrtum in curved tubes. Differ. Geometry Appl. 23 (2005) 95-105. | Zbl
, , and ,[3] Fluids and periodic structures, Research in Applied Mathematics 38. Masson, Paris (1995). | MR | Zbl
, and ,
[4] An Introduction to
[5] Curvature-induced bounds states in quantum waveguides in two and tree dimensions. Rev. Math. Phys. 7 (1995) 73-102. | Zbl
and ,[6] Homogenization of Differential Operators and Integral Equations. Springer-Verlag, Berlin (1994). | MR
, and ,[7] On some spectral problems of mathematical physics. Partial differential equations and inverse problems., Contemp. Math. 362. Amer. Math. Soc., Providence, RI (2004) 241-276. | Zbl
,[8] Variational problems on multiply connected thin strips. II. Convergence of the Ginzburg-Landau functional. Arch. Ration. Mech. Anal. 160 (2001) 309-324. | Zbl
, ,[9] Homogenization of eigenvalue problems in perforated domains. Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 239-271. | Zbl
,Cité par Sources :