@article{SPS_2000__34__336_0, author = {Miclo, Laurent and Roberto, Cyril}, title = {Trous spectraux pour certains algorithmes de {Metropolis} sur $\mathbb {R}$}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {336--352}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {34}, year = {2000}, mrnumber = {1768073}, zbl = {0962.60064}, language = {fr}, url = {http://www.numdam.org/item/SPS_2000__34__336_0/} }
TY - JOUR AU - Miclo, Laurent AU - Roberto, Cyril TI - Trous spectraux pour certains algorithmes de Metropolis sur $\mathbb {R}$ JO - Séminaire de probabilités de Strasbourg PY - 2000 SP - 336 EP - 352 VL - 34 PB - Springer - Lecture Notes in Mathematics UR - http://www.numdam.org/item/SPS_2000__34__336_0/ LA - fr ID - SPS_2000__34__336_0 ER -
%0 Journal Article %A Miclo, Laurent %A Roberto, Cyril %T Trous spectraux pour certains algorithmes de Metropolis sur $\mathbb {R}$ %J Séminaire de probabilités de Strasbourg %D 2000 %P 336-352 %V 34 %I Springer - Lecture Notes in Mathematics %U http://www.numdam.org/item/SPS_2000__34__336_0/ %G fr %F SPS_2000__34__336_0
Miclo, Laurent; Roberto, Cyril. Trous spectraux pour certains algorithmes de Metropolis sur $\mathbb {R}$. Séminaire de probabilités de Strasbourg, Tome 34 (2000), pp. 336-352. http://www.numdam.org/item/SPS_2000__34__336_0/
[1] L'hypercontractivité et son utilisation en théorie des semigroupes. In P. Bernard, editor, Lectures on Probability Theory. Ecole d'Eté de Probabilités de Saint-Flour XXII-1992, Lecture Notes in Mathematics 1581. Springer-Verlag, 1994. | MR | Zbl
.[2] On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. Journal of Functional Analysis, 22:366-389, 1976. | MR | Zbl
and .[3] A lower bound for smallest eigenvalue of the Laplacian, Problems in Analysis, Symposium in honor of S. Bochner, Princeton University Press, (1970), 195-199. | MR | Zbl
,[4] Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process, The Annals of Applied Probability, (1991) 1 (1), 62-87. | MR | Zbl
,[5] Bounds on the L2 spectrum for Markov chains and Markov processes : a generalization of Cheeger inequality, Transactions of the American Mathematical Society, (1988) 309 (2), 557-580. | MR | Zbl
and ,[6] Markov Chains and Stochastic Stability. Springer-Verlag, 1993. | MR | Zbl
and .[7] Trous spectraux à basse température: un contre-exemple à un comportement asymptotique escompté, Séminaire de Probabilités XXXII, Lecture Notes in Mathematics 1686, Springer-Verlag, (1998), 36-55. | EuDML | Numdam | MR | Zbl
,[8] Une variante de l'inégalité de Cheeger pour les chaînes de Markov finies, ESAIM: P&S, URL: http://www.emath.fr/ps/, (1998) 2, 1-21. | EuDML | Numdam | Zbl
,[9] Bases mathématiques du calcul des probabilités. Masson, 1970. | MR | Zbl
.[10] Markov chain convergence : from finite to infinite, Stochastic Process and their applications, (1996) 62, 55-72. | MR | Zbl
,[11] Lectures on finite Markov chains. In P. Bernard, editor, Lectures on Probability Theory and Statistics. Ecole d'Eté de Probabilités de Saint-Flour XXVI-1996, Lecture Notes in Mathematics 1665. Springer-Verlag, Berlin, 1997. | MR | Zbl
.[12] Improved bounds for mixing rates of Markov chains and multicommodity flow, Combinatories, proba. comput., (1992) 1, 351-370. | MR | Zbl
,